Extensions 1→N→G→Q→1 with N=C9xDic6 and Q=C2

Direct product G=NxQ with N=C9xDic6 and Q=C2
dρLabelID
C18xDic6144C18xDic6432,341

Semidirect products G=N:Q with N=C9xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9xDic6):1C2 = Dic6:D9φ: C2/C1C2 ⊆ Out C9xDic61444(C9xDic6):1C2432,72
(C9xDic6):2C2 = C18.D12φ: C2/C1C2 ⊆ Out C9xDic6724+(C9xDic6):2C2432,73
(C9xDic6):3C2 = D9xDic6φ: C2/C1C2 ⊆ Out C9xDic61444-(C9xDic6):3C2432,280
(C9xDic6):4C2 = D18.D6φ: C2/C1C2 ⊆ Out C9xDic6724(C9xDic6):4C2432,281
(C9xDic6):5C2 = Dic6:5D9φ: C2/C1C2 ⊆ Out C9xDic6724+(C9xDic6):5C2432,282
(C9xDic6):6C2 = Dic18:S3φ: C2/C1C2 ⊆ Out C9xDic6724(C9xDic6):6C2432,283
(C9xDic6):7C2 = C9xC24:C2φ: C2/C1C2 ⊆ Out C9xDic61442(C9xDic6):7C2432,111
(C9xDic6):8C2 = C9xD4.S3φ: C2/C1C2 ⊆ Out C9xDic6724(C9xDic6):8C2432,151
(C9xDic6):9C2 = C9xD4:2S3φ: C2/C1C2 ⊆ Out C9xDic6724(C9xDic6):9C2432,359
(C9xDic6):10C2 = S3xQ8xC9φ: C2/C1C2 ⊆ Out C9xDic61444(C9xDic6):10C2432,366
(C9xDic6):11C2 = C9xC4oD12φ: trivial image722(C9xDic6):11C2432,347

Non-split extensions G=N.Q with N=C9xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9xDic6).1C2 = C12.D18φ: C2/C1C2 ⊆ Out C9xDic61444(C9xDic6).1C2432,74
(C9xDic6).2C2 = C9:Dic12φ: C2/C1C2 ⊆ Out C9xDic61444-(C9xDic6).2C2432,75
(C9xDic6).3C2 = C9xDic12φ: C2/C1C2 ⊆ Out C9xDic61442(C9xDic6).3C2432,113
(C9xDic6).4C2 = C9xC3:Q16φ: C2/C1C2 ⊆ Out C9xDic61444(C9xDic6).4C2432,159

׿
x
:
Z
F
o
wr
Q
<