Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C3xD9

Direct product G=NxQ with N=C2xC4 and Q=C3xD9
dρLabelID
D9xC2xC12144D9xC2xC12432,342

Semidirect products G=N:Q with N=C2xC4 and Q=C3xD9
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C3xD9) = C3xD18:C4φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4):1(C3xD9)432,134
(C2xC4):2(C3xD9) = C6xD36φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4):2(C3xD9)432,343
(C2xC4):3(C3xD9) = C3xD36:5C2φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4722(C2xC4):3(C3xD9)432,344

Non-split extensions G=N.Q with N=C2xC4 and Q=C3xD9
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C3xD9) = C3xDic9:C4φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4).1(C3xD9)432,129
(C2xC4).2(C3xD9) = C3xC4.Dic9φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4722(C2xC4).2(C3xD9)432,125
(C2xC4).3(C3xD9) = C3xC4:Dic9φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4).3(C3xD9)432,130
(C2xC4).4(C3xD9) = C6xDic18φ: C3xD9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4).4(C3xD9)432,340
(C2xC4).5(C3xD9) = C6xC9:C8central extension (φ=1)144(C2xC4).5(C3xD9)432,124
(C2xC4).6(C3xD9) = C12xDic9central extension (φ=1)144(C2xC4).6(C3xD9)432,128

׿
x
:
Z
F
o
wr
Q
<