Copied to
clipboard

G = C3×D18⋊C4order 432 = 24·33

Direct product of C3 and D18⋊C4

direct product, metabelian, supersoluble, monomial

Aliases: C3×D18⋊C4, D183C12, C6.23D36, C62.121D6, (C6×C36)⋊1C2, (C2×C36)⋊9C6, (C6×D9)⋊2C4, (C2×C12)⋊1D9, C2.2(C3×D36), C6.25(C4×D9), C2.5(C12×D9), C6.13(S3×C12), (C6×C12).24S3, (C6×Dic9)⋊3C2, (C2×Dic9)⋊7C6, C18.21(C3×D4), (C2×C6).49D18, C6.11(C3×D12), (C3×C6).53D12, (C3×C18).28D4, C22.6(C6×D9), C18.19(C2×C12), C6.30(C9⋊D4), (C22×D9).3C6, (C6×C18).35C22, C32.4(D6⋊C4), (C2×C4)⋊1(C3×D9), (C2×C6×D9).2C2, C94(C3×C22⋊C4), C3.1(C3×D6⋊C4), C2.2(C3×C9⋊D4), (C3×C9)⋊5(C22⋊C4), (C3×C6).67(C4×S3), (C2×C12).3(C3×S3), (C2×C6).37(S3×C6), C6.13(C3×C3⋊D4), (C2×C18).26(C2×C6), (C3×C18).22(C2×C4), (C3×C6).91(C3⋊D4), SmallGroup(432,134)

Series: Derived Chief Lower central Upper central

C1C18 — C3×D18⋊C4
C1C3C9C18C2×C18C6×C18C2×C6×D9 — C3×D18⋊C4
C9C18 — C3×D18⋊C4
C1C2×C6C2×C12

Generators and relations for C3×D18⋊C4
 G = < a,b,c,d | a3=b18=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b9c >

Subgroups: 470 in 118 conjugacy classes, 46 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C9, C9, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, D9, C18, C18, C3×S3, C3×C6, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×C6, C3×C9, Dic9, C36, D18, D18, C2×C18, C2×C18, C3×Dic3, C3×C12, S3×C6, C62, D6⋊C4, C3×C22⋊C4, C3×D9, C3×C18, C2×Dic9, C2×C36, C2×C36, C22×D9, C6×Dic3, C6×C12, S3×C2×C6, C3×Dic9, C3×C36, C6×D9, C6×D9, C6×C18, D18⋊C4, C3×D6⋊C4, C6×Dic9, C6×C36, C2×C6×D9, C3×D18⋊C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, C12, D6, C2×C6, C22⋊C4, D9, C3×S3, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, D18, S3×C6, D6⋊C4, C3×C22⋊C4, C3×D9, C4×D9, D36, C9⋊D4, S3×C12, C3×D12, C3×C3⋊D4, C6×D9, D18⋊C4, C3×D6⋊C4, C12×D9, C3×D36, C3×C9⋊D4, C3×D18⋊C4

Smallest permutation representation of C3×D18⋊C4
On 144 points
Generators in S144
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)(55 61 67)(56 62 68)(57 63 69)(58 64 70)(59 65 71)(60 66 72)(73 85 79)(74 86 80)(75 87 81)(76 88 82)(77 89 83)(78 90 84)(91 103 97)(92 104 98)(93 105 99)(94 106 100)(95 107 101)(96 108 102)(109 121 115)(110 122 116)(111 123 117)(112 124 118)(113 125 119)(114 126 120)(127 139 133)(128 140 134)(129 141 135)(130 142 136)(131 143 137)(132 144 138)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 90)(10 89)(11 88)(12 87)(13 86)(14 85)(15 84)(16 83)(17 82)(18 81)(19 92)(20 91)(21 108)(22 107)(23 106)(24 105)(25 104)(26 103)(27 102)(28 101)(29 100)(30 99)(31 98)(32 97)(33 96)(34 95)(35 94)(36 93)(37 113)(38 112)(39 111)(40 110)(41 109)(42 126)(43 125)(44 124)(45 123)(46 122)(47 121)(48 120)(49 119)(50 118)(51 117)(52 116)(53 115)(54 114)(55 135)(56 134)(57 133)(58 132)(59 131)(60 130)(61 129)(62 128)(63 127)(64 144)(65 143)(66 142)(67 141)(68 140)(69 139)(70 138)(71 137)(72 136)
(1 55 31 38)(2 56 32 39)(3 57 33 40)(4 58 34 41)(5 59 35 42)(6 60 36 43)(7 61 19 44)(8 62 20 45)(9 63 21 46)(10 64 22 47)(11 65 23 48)(12 66 24 49)(13 67 25 50)(14 68 26 51)(15 69 27 52)(16 70 28 53)(17 71 29 54)(18 72 30 37)(73 137 91 114)(74 138 92 115)(75 139 93 116)(76 140 94 117)(77 141 95 118)(78 142 96 119)(79 143 97 120)(80 144 98 121)(81 127 99 122)(82 128 100 123)(83 129 101 124)(84 130 102 125)(85 131 103 126)(86 132 104 109)(87 133 105 110)(88 134 106 111)(89 135 107 112)(90 136 108 113)

G:=sub<Sym(144)| (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84)(91,103,97)(92,104,98)(93,105,99)(94,106,100)(95,107,101)(96,108,102)(109,121,115)(110,122,116)(111,123,117)(112,124,118)(113,125,119)(114,126,120)(127,139,133)(128,140,134)(129,141,135)(130,142,136)(131,143,137)(132,144,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,92)(20,91)(21,108)(22,107)(23,106)(24,105)(25,104)(26,103)(27,102)(28,101)(29,100)(30,99)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,113)(38,112)(39,111)(40,110)(41,109)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,135)(56,134)(57,133)(58,132)(59,131)(60,130)(61,129)(62,128)(63,127)(64,144)(65,143)(66,142)(67,141)(68,140)(69,139)(70,138)(71,137)(72,136), (1,55,31,38)(2,56,32,39)(3,57,33,40)(4,58,34,41)(5,59,35,42)(6,60,36,43)(7,61,19,44)(8,62,20,45)(9,63,21,46)(10,64,22,47)(11,65,23,48)(12,66,24,49)(13,67,25,50)(14,68,26,51)(15,69,27,52)(16,70,28,53)(17,71,29,54)(18,72,30,37)(73,137,91,114)(74,138,92,115)(75,139,93,116)(76,140,94,117)(77,141,95,118)(78,142,96,119)(79,143,97,120)(80,144,98,121)(81,127,99,122)(82,128,100,123)(83,129,101,124)(84,130,102,125)(85,131,103,126)(86,132,104,109)(87,133,105,110)(88,134,106,111)(89,135,107,112)(90,136,108,113)>;

G:=Group( (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84)(91,103,97)(92,104,98)(93,105,99)(94,106,100)(95,107,101)(96,108,102)(109,121,115)(110,122,116)(111,123,117)(112,124,118)(113,125,119)(114,126,120)(127,139,133)(128,140,134)(129,141,135)(130,142,136)(131,143,137)(132,144,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,92)(20,91)(21,108)(22,107)(23,106)(24,105)(25,104)(26,103)(27,102)(28,101)(29,100)(30,99)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,113)(38,112)(39,111)(40,110)(41,109)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,135)(56,134)(57,133)(58,132)(59,131)(60,130)(61,129)(62,128)(63,127)(64,144)(65,143)(66,142)(67,141)(68,140)(69,139)(70,138)(71,137)(72,136), (1,55,31,38)(2,56,32,39)(3,57,33,40)(4,58,34,41)(5,59,35,42)(6,60,36,43)(7,61,19,44)(8,62,20,45)(9,63,21,46)(10,64,22,47)(11,65,23,48)(12,66,24,49)(13,67,25,50)(14,68,26,51)(15,69,27,52)(16,70,28,53)(17,71,29,54)(18,72,30,37)(73,137,91,114)(74,138,92,115)(75,139,93,116)(76,140,94,117)(77,141,95,118)(78,142,96,119)(79,143,97,120)(80,144,98,121)(81,127,99,122)(82,128,100,123)(83,129,101,124)(84,130,102,125)(85,131,103,126)(86,132,104,109)(87,133,105,110)(88,134,106,111)(89,135,107,112)(90,136,108,113) );

G=PermutationGroup([[(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54),(55,61,67),(56,62,68),(57,63,69),(58,64,70),(59,65,71),(60,66,72),(73,85,79),(74,86,80),(75,87,81),(76,88,82),(77,89,83),(78,90,84),(91,103,97),(92,104,98),(93,105,99),(94,106,100),(95,107,101),(96,108,102),(109,121,115),(110,122,116),(111,123,117),(112,124,118),(113,125,119),(114,126,120),(127,139,133),(128,140,134),(129,141,135),(130,142,136),(131,143,137),(132,144,138)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,90),(10,89),(11,88),(12,87),(13,86),(14,85),(15,84),(16,83),(17,82),(18,81),(19,92),(20,91),(21,108),(22,107),(23,106),(24,105),(25,104),(26,103),(27,102),(28,101),(29,100),(30,99),(31,98),(32,97),(33,96),(34,95),(35,94),(36,93),(37,113),(38,112),(39,111),(40,110),(41,109),(42,126),(43,125),(44,124),(45,123),(46,122),(47,121),(48,120),(49,119),(50,118),(51,117),(52,116),(53,115),(54,114),(55,135),(56,134),(57,133),(58,132),(59,131),(60,130),(61,129),(62,128),(63,127),(64,144),(65,143),(66,142),(67,141),(68,140),(69,139),(70,138),(71,137),(72,136)], [(1,55,31,38),(2,56,32,39),(3,57,33,40),(4,58,34,41),(5,59,35,42),(6,60,36,43),(7,61,19,44),(8,62,20,45),(9,63,21,46),(10,64,22,47),(11,65,23,48),(12,66,24,49),(13,67,25,50),(14,68,26,51),(15,69,27,52),(16,70,28,53),(17,71,29,54),(18,72,30,37),(73,137,91,114),(74,138,92,115),(75,139,93,116),(76,140,94,117),(77,141,95,118),(78,142,96,119),(79,143,97,120),(80,144,98,121),(81,127,99,122),(82,128,100,123),(83,129,101,124),(84,130,102,125),(85,131,103,126),(86,132,104,109),(87,133,105,110),(88,134,106,111),(89,135,107,112),(90,136,108,113)]])

126 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D6A···6F6G···6O6P6Q6R6S9A···9I12A···12P12Q12R12S12T18A···18AA36A···36AJ
order1222223333344446···66···666669···912···121212121218···1836···36
size11111818112222218181···12···2181818182···22···2181818182···22···2

126 irreducible representations

dim11111111112222222222222222222222
type+++++++++++
imageC1C2C2C2C3C4C6C6C6C12S3D4D6D9C3×S3C3×D4C4×S3D12C3⋊D4D18S3×C6C3×D9C4×D9D36C9⋊D4S3×C12C3×D12C3×C3⋊D4C6×D9C12×D9C3×D36C3×C9⋊D4
kernelC3×D18⋊C4C6×Dic9C6×C36C2×C6×D9D18⋊C4C6×D9C2×Dic9C2×C36C22×D9D18C6×C12C3×C18C62C2×C12C2×C12C18C3×C6C3×C6C3×C6C2×C6C2×C6C2×C4C6C6C6C6C6C6C22C2C2C2
# reps11112422281213242223266664446121212

Matrix representation of C3×D18⋊C4 in GL3(𝔽37) generated by

2600
0260
0026
,
100
0300
0021
,
3600
0021
0300
,
600
0360
001
G:=sub<GL(3,GF(37))| [26,0,0,0,26,0,0,0,26],[1,0,0,0,30,0,0,0,21],[36,0,0,0,0,30,0,21,0],[6,0,0,0,36,0,0,0,1] >;

C3×D18⋊C4 in GAP, Magma, Sage, TeX

C_3\times D_{18}\rtimes C_4
% in TeX

G:=Group("C3xD18:C4");
// GroupNames label

G:=SmallGroup(432,134);
// by ID

G=gap.SmallGroup(432,134);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,365,92,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^18=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^9*c>;
// generators/relations

׿
×
𝔽