Copied to
clipboard

G = D9×C2×C12order 432 = 24·33

Direct product of C2×C12 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D9×C2×C12, C62.129D6, C368(C2×C6), (C6×C36)⋊10C2, C184(C2×C12), (C2×C36)⋊13C6, C6.20(S3×C12), C12.96(S3×C6), (C6×C12).50S3, C94(C22×C12), Dic97(C2×C6), D18.9(C2×C6), (C2×C6).52D18, C22.9(C6×D9), (C3×C36)⋊11C22, (C2×Dic9)⋊11C6, (C6×Dic9)⋊11C2, (C3×C12).220D6, (C22×D9).4C6, C6.50(C22×D9), (C3×C18).39C23, (C6×C18).43C22, C18.16(C22×C6), (C6×D9).15C22, (C3×Dic9)⋊10C22, C2.1(C2×C6×D9), C6.20(S3×C2×C6), C3.1(S3×C2×C12), (C2×C6×D9).4C2, (C3×C18)⋊5(C2×C4), (C3×C9)⋊6(C22×C4), C32.5(S3×C2×C4), (C3×C6).73(C4×S3), (C2×C6).50(S3×C6), (C2×C12).35(C3×S3), (C2×C18).29(C2×C6), (C3×C6).153(C22×S3), SmallGroup(432,342)

Series: Derived Chief Lower central Upper central

C1C9 — D9×C2×C12
C1C3C9C18C3×C18C6×D9C2×C6×D9 — D9×C2×C12
C9 — D9×C2×C12
C1C2×C12

Generators and relations for D9×C2×C12
 G = < a,b,c,d | a2=b12=c9=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 574 in 178 conjugacy classes, 86 normal (30 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C23, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C22×C4, D9, C18, C18, C18, C3×S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×C6, C3×C9, Dic9, C36, C36, D18, C2×C18, C2×C18, C3×Dic3, C3×C12, S3×C6, C62, S3×C2×C4, C22×C12, C3×D9, C3×C18, C3×C18, C4×D9, C2×Dic9, C2×C36, C2×C36, C22×D9, S3×C12, C6×Dic3, C6×C12, S3×C2×C6, C3×Dic9, C3×C36, C6×D9, C6×C18, C2×C4×D9, S3×C2×C12, C12×D9, C6×Dic9, C6×C36, C2×C6×D9, D9×C2×C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C23, C12, D6, C2×C6, C22×C4, D9, C3×S3, C4×S3, C2×C12, C22×S3, C22×C6, D18, S3×C6, S3×C2×C4, C22×C12, C3×D9, C4×D9, C22×D9, S3×C12, S3×C2×C6, C6×D9, C2×C4×D9, S3×C2×C12, C12×D9, C2×C6×D9, D9×C2×C12

Smallest permutation representation of D9×C2×C12
On 144 points
Generators in S144
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 37)(24 38)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 61)(73 115)(74 116)(75 117)(76 118)(77 119)(78 120)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 108)(86 97)(87 98)(88 99)(89 100)(90 101)(91 102)(92 103)(93 104)(94 105)(95 106)(96 107)(121 143)(122 144)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(131 141)(132 142)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 53 130 5 57 122 9 49 126)(2 54 131 6 58 123 10 50 127)(3 55 132 7 59 124 11 51 128)(4 56 121 8 60 125 12 52 129)(13 98 109 21 106 117 17 102 113)(14 99 110 22 107 118 18 103 114)(15 100 111 23 108 119 19 104 115)(16 101 112 24 97 120 20 105 116)(25 72 134 29 64 138 33 68 142)(26 61 135 30 65 139 34 69 143)(27 62 136 31 66 140 35 70 144)(28 63 137 32 67 141 36 71 133)(37 85 77 45 93 73 41 89 81)(38 86 78 46 94 74 42 90 82)(39 87 79 47 95 75 43 91 83)(40 88 80 48 96 76 44 92 84)
(1 117)(2 118)(3 119)(4 120)(5 109)(6 110)(7 111)(8 112)(9 113)(10 114)(11 115)(12 116)(13 122)(14 123)(15 124)(16 125)(17 126)(18 127)(19 128)(20 129)(21 130)(22 131)(23 132)(24 121)(25 81)(26 82)(27 83)(28 84)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 142)(38 143)(39 144)(40 133)(41 134)(42 135)(43 136)(44 137)(45 138)(46 139)(47 140)(48 141)(49 102)(50 103)(51 104)(52 105)(53 106)(54 107)(55 108)(56 97)(57 98)(58 99)(59 100)(60 101)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 85)(69 86)(70 87)(71 88)(72 89)

G:=sub<Sym(144)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,61)(73,115)(74,116)(75,117)(76,118)(77,119)(78,120)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,108)(86,97)(87,98)(88,99)(89,100)(90,101)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(121,143)(122,144)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(131,141)(132,142), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,53,130,5,57,122,9,49,126)(2,54,131,6,58,123,10,50,127)(3,55,132,7,59,124,11,51,128)(4,56,121,8,60,125,12,52,129)(13,98,109,21,106,117,17,102,113)(14,99,110,22,107,118,18,103,114)(15,100,111,23,108,119,19,104,115)(16,101,112,24,97,120,20,105,116)(25,72,134,29,64,138,33,68,142)(26,61,135,30,65,139,34,69,143)(27,62,136,31,66,140,35,70,144)(28,63,137,32,67,141,36,71,133)(37,85,77,45,93,73,41,89,81)(38,86,78,46,94,74,42,90,82)(39,87,79,47,95,75,43,91,83)(40,88,80,48,96,76,44,92,84), (1,117)(2,118)(3,119)(4,120)(5,109)(6,110)(7,111)(8,112)(9,113)(10,114)(11,115)(12,116)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,130)(22,131)(23,132)(24,121)(25,81)(26,82)(27,83)(28,84)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,142)(38,143)(39,144)(40,133)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,97)(57,98)(58,99)(59,100)(60,101)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,85)(69,86)(70,87)(71,88)(72,89)>;

G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,61)(73,115)(74,116)(75,117)(76,118)(77,119)(78,120)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,108)(86,97)(87,98)(88,99)(89,100)(90,101)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(121,143)(122,144)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(131,141)(132,142), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,53,130,5,57,122,9,49,126)(2,54,131,6,58,123,10,50,127)(3,55,132,7,59,124,11,51,128)(4,56,121,8,60,125,12,52,129)(13,98,109,21,106,117,17,102,113)(14,99,110,22,107,118,18,103,114)(15,100,111,23,108,119,19,104,115)(16,101,112,24,97,120,20,105,116)(25,72,134,29,64,138,33,68,142)(26,61,135,30,65,139,34,69,143)(27,62,136,31,66,140,35,70,144)(28,63,137,32,67,141,36,71,133)(37,85,77,45,93,73,41,89,81)(38,86,78,46,94,74,42,90,82)(39,87,79,47,95,75,43,91,83)(40,88,80,48,96,76,44,92,84), (1,117)(2,118)(3,119)(4,120)(5,109)(6,110)(7,111)(8,112)(9,113)(10,114)(11,115)(12,116)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,130)(22,131)(23,132)(24,121)(25,81)(26,82)(27,83)(28,84)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,142)(38,143)(39,144)(40,133)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,97)(57,98)(58,99)(59,100)(60,101)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,85)(69,86)(70,87)(71,88)(72,89) );

G=PermutationGroup([[(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,37),(24,38),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,61),(73,115),(74,116),(75,117),(76,118),(77,119),(78,120),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,108),(86,97),(87,98),(88,99),(89,100),(90,101),(91,102),(92,103),(93,104),(94,105),(95,106),(96,107),(121,143),(122,144),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(131,141),(132,142)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,53,130,5,57,122,9,49,126),(2,54,131,6,58,123,10,50,127),(3,55,132,7,59,124,11,51,128),(4,56,121,8,60,125,12,52,129),(13,98,109,21,106,117,17,102,113),(14,99,110,22,107,118,18,103,114),(15,100,111,23,108,119,19,104,115),(16,101,112,24,97,120,20,105,116),(25,72,134,29,64,138,33,68,142),(26,61,135,30,65,139,34,69,143),(27,62,136,31,66,140,35,70,144),(28,63,137,32,67,141,36,71,133),(37,85,77,45,93,73,41,89,81),(38,86,78,46,94,74,42,90,82),(39,87,79,47,95,75,43,91,83),(40,88,80,48,96,76,44,92,84)], [(1,117),(2,118),(3,119),(4,120),(5,109),(6,110),(7,111),(8,112),(9,113),(10,114),(11,115),(12,116),(13,122),(14,123),(15,124),(16,125),(17,126),(18,127),(19,128),(20,129),(21,130),(22,131),(23,132),(24,121),(25,81),(26,82),(27,83),(28,84),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,142),(38,143),(39,144),(40,133),(41,134),(42,135),(43,136),(44,137),(45,138),(46,139),(47,140),(48,141),(49,102),(50,103),(51,104),(52,105),(53,106),(54,107),(55,108),(56,97),(57,98),(58,99),(59,100),(60,101),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,85),(69,86),(70,87),(71,88),(72,89)]])

144 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D4E4F4G4H6A···6F6G···6O6P···6W9A···9I12A···12H12I···12T12U···12AB18A···18AA36A···36AJ
order1222222233333444444446···66···66···69···912···1212···1212···1218···1836···36
size1111999911222111199991···12···29···92···21···12···29···92···22···2

144 irreducible representations

dim1111111111112222222222222222
type+++++++++++
imageC1C2C2C2C2C3C4C6C6C6C6C12S3D6D6D9C3×S3C4×S3D18S3×C6D18S3×C6C3×D9C4×D9S3×C12C6×D9C6×D9C12×D9
kernelD9×C2×C12C12×D9C6×Dic9C6×C36C2×C6×D9C2×C4×D9C6×D9C4×D9C2×Dic9C2×C36C22×D9D18C6×C12C3×C12C62C2×C12C2×C12C3×C6C12C12C2×C6C2×C6C2×C4C6C6C4C22C2
# reps14111288222161213246432612812624

Matrix representation of D9×C2×C12 in GL5(𝔽37)

360000
01000
00100
00010
00001
,
270000
06000
00600
000260
000026
,
10000
00100
0363600
00090
000033
,
10000
081200
042900
000033
00090

G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[27,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,26,0,0,0,0,0,26],[1,0,0,0,0,0,0,36,0,0,0,1,36,0,0,0,0,0,9,0,0,0,0,0,33],[1,0,0,0,0,0,8,4,0,0,0,12,29,0,0,0,0,0,0,9,0,0,0,33,0] >;

D9×C2×C12 in GAP, Magma, Sage, TeX

D_9\times C_2\times C_{12}
% in TeX

G:=Group("D9xC2xC12");
// GroupNames label

G:=SmallGroup(432,342);
// by ID

G=gap.SmallGroup(432,342);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,142,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^9=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽