Extensions 1→N→G→Q→1 with N=C2×C9⋊Dic3 and Q=C2

Direct product G=N×Q with N=C2×C9⋊Dic3 and Q=C2
dρLabelID
C22×C9⋊Dic3432C2^2xC9:Dic3432,396

Semidirect products G=N:Q with N=C2×C9⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C9⋊Dic3)⋊1C2 = D18⋊Dic3φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3):1C2432,91
(C2×C9⋊Dic3)⋊2C2 = D6⋊Dic9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3):2C2432,93
(C2×C9⋊Dic3)⋊3C2 = C6.11D36φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3216(C2xC9:Dic3):3C2432,183
(C2×C9⋊Dic3)⋊4C2 = C62.127D6φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3216(C2xC9:Dic3):4C2432,198
(C2×C9⋊Dic3)⋊5C2 = C2×Dic3×D9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3):5C2432,304
(C2×C9⋊Dic3)⋊6C2 = C2×S3×Dic9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3):6C2432,308
(C2×C9⋊Dic3)⋊7C2 = D18.4D6φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3724-(C2xC9:Dic3):7C2432,310
(C2×C9⋊Dic3)⋊8C2 = C2×D6⋊D9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3):8C2432,311
(C2×C9⋊Dic3)⋊9C2 = C36.27D6φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3216(C2xC9:Dic3):9C2432,389
(C2×C9⋊Dic3)⋊10C2 = C2×C6.D18φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3216(C2xC9:Dic3):10C2432,397
(C2×C9⋊Dic3)⋊11C2 = C2×C4×C9⋊S3φ: trivial image216(C2xC9:Dic3):11C2432,381

Non-split extensions G=N.Q with N=C2×C9⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C9⋊Dic3).1C2 = Dic3×Dic9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3).1C2432,87
(C2×C9⋊Dic3).2C2 = Dic9⋊Dic3φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3).2C2432,88
(C2×C9⋊Dic3).3C2 = C18.Dic6φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3).3C2432,89
(C2×C9⋊Dic3).4C2 = Dic3⋊Dic9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3).4C2432,90
(C2×C9⋊Dic3).5C2 = C6.Dic18φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3432(C2xC9:Dic3).5C2432,181
(C2×C9⋊Dic3).6C2 = C36⋊Dic3φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3432(C2xC9:Dic3).6C2432,182
(C2×C9⋊Dic3).7C2 = C2×C9⋊Dic6φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3144(C2xC9:Dic3).7C2432,303
(C2×C9⋊Dic3).8C2 = C2×C12.D9φ: C2/C1C2 ⊆ Out C2×C9⋊Dic3432(C2xC9:Dic3).8C2432,380
(C2×C9⋊Dic3).9C2 = C4×C9⋊Dic3φ: trivial image432(C2xC9:Dic3).9C2432,180

׿
×
𝔽