Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Dic9

Direct product G=N×Q with N=C6 and Q=C2×Dic9
dρLabelID
C2×C6×Dic9144C2xC6xDic9432,372

Semidirect products G=N:Q with N=C6 and Q=C2×Dic9
extensionφ:Q→Aut NdρLabelID
C61(C2×Dic9) = C2×S3×Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C6144C6:1(C2xDic9)432,308
C62(C2×Dic9) = C22×C9⋊Dic3φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6:2(C2xDic9)432,396

Non-split extensions G=N.Q with N=C6 and Q=C2×Dic9
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Dic9) = S3×C9⋊C8φ: C2×Dic9/Dic9C2 ⊆ Aut C61444C6.1(C2xDic9)432,66
C6.2(C2×Dic9) = D6.Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C61444C6.2(C2xDic9)432,67
C6.3(C2×Dic9) = Dic3×Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C6144C6.3(C2xDic9)432,87
C6.4(C2×Dic9) = Dic3⋊Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C6144C6.4(C2xDic9)432,90
C6.5(C2×Dic9) = D6⋊Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C6144C6.5(C2xDic9)432,93
C6.6(C2×Dic9) = C2×C27⋊C8φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.6(C2xDic9)432,9
C6.7(C2×Dic9) = C4.Dic27φ: C2×Dic9/C2×C18C2 ⊆ Aut C62162C6.7(C2xDic9)432,10
C6.8(C2×Dic9) = C4×Dic27φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.8(C2xDic9)432,11
C6.9(C2×Dic9) = C4⋊Dic27φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.9(C2xDic9)432,13
C6.10(C2×Dic9) = C54.D4φ: C2×Dic9/C2×C18C2 ⊆ Aut C6216C6.10(C2xDic9)432,19
C6.11(C2×Dic9) = C22×Dic27φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.11(C2xDic9)432,51
C6.12(C2×Dic9) = C2×C36.S3φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.12(C2xDic9)432,178
C6.13(C2×Dic9) = C36.69D6φ: C2×Dic9/C2×C18C2 ⊆ Aut C6216C6.13(C2xDic9)432,179
C6.14(C2×Dic9) = C4×C9⋊Dic3φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.14(C2xDic9)432,180
C6.15(C2×Dic9) = C36⋊Dic3φ: C2×Dic9/C2×C18C2 ⊆ Aut C6432C6.15(C2xDic9)432,182
C6.16(C2×Dic9) = C62.127D6φ: C2×Dic9/C2×C18C2 ⊆ Aut C6216C6.16(C2xDic9)432,198
C6.17(C2×Dic9) = C6×C9⋊C8central extension (φ=1)144C6.17(C2xDic9)432,124
C6.18(C2×Dic9) = C3×C4.Dic9central extension (φ=1)722C6.18(C2xDic9)432,125
C6.19(C2×Dic9) = C12×Dic9central extension (φ=1)144C6.19(C2xDic9)432,128
C6.20(C2×Dic9) = C3×C4⋊Dic9central extension (φ=1)144C6.20(C2xDic9)432,130
C6.21(C2×Dic9) = C3×C18.D4central extension (φ=1)72C6.21(C2xDic9)432,164

׿
×
𝔽