extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×Dic9) = S3×C9⋊C8 | φ: C2×Dic9/Dic9 → C2 ⊆ Aut C6 | 144 | 4 | C6.1(C2xDic9) | 432,66 |
C6.2(C2×Dic9) = D6.Dic9 | φ: C2×Dic9/Dic9 → C2 ⊆ Aut C6 | 144 | 4 | C6.2(C2xDic9) | 432,67 |
C6.3(C2×Dic9) = Dic3×Dic9 | φ: C2×Dic9/Dic9 → C2 ⊆ Aut C6 | 144 | | C6.3(C2xDic9) | 432,87 |
C6.4(C2×Dic9) = Dic3⋊Dic9 | φ: C2×Dic9/Dic9 → C2 ⊆ Aut C6 | 144 | | C6.4(C2xDic9) | 432,90 |
C6.5(C2×Dic9) = D6⋊Dic9 | φ: C2×Dic9/Dic9 → C2 ⊆ Aut C6 | 144 | | C6.5(C2xDic9) | 432,93 |
C6.6(C2×Dic9) = C2×C27⋊C8 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.6(C2xDic9) | 432,9 |
C6.7(C2×Dic9) = C4.Dic27 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 216 | 2 | C6.7(C2xDic9) | 432,10 |
C6.8(C2×Dic9) = C4×Dic27 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.8(C2xDic9) | 432,11 |
C6.9(C2×Dic9) = C4⋊Dic27 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.9(C2xDic9) | 432,13 |
C6.10(C2×Dic9) = C54.D4 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 216 | | C6.10(C2xDic9) | 432,19 |
C6.11(C2×Dic9) = C22×Dic27 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.11(C2xDic9) | 432,51 |
C6.12(C2×Dic9) = C2×C36.S3 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.12(C2xDic9) | 432,178 |
C6.13(C2×Dic9) = C36.69D6 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 216 | | C6.13(C2xDic9) | 432,179 |
C6.14(C2×Dic9) = C4×C9⋊Dic3 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.14(C2xDic9) | 432,180 |
C6.15(C2×Dic9) = C36⋊Dic3 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 432 | | C6.15(C2xDic9) | 432,182 |
C6.16(C2×Dic9) = C62.127D6 | φ: C2×Dic9/C2×C18 → C2 ⊆ Aut C6 | 216 | | C6.16(C2xDic9) | 432,198 |
C6.17(C2×Dic9) = C6×C9⋊C8 | central extension (φ=1) | 144 | | C6.17(C2xDic9) | 432,124 |
C6.18(C2×Dic9) = C3×C4.Dic9 | central extension (φ=1) | 72 | 2 | C6.18(C2xDic9) | 432,125 |
C6.19(C2×Dic9) = C12×Dic9 | central extension (φ=1) | 144 | | C6.19(C2xDic9) | 432,128 |
C6.20(C2×Dic9) = C3×C4⋊Dic9 | central extension (φ=1) | 144 | | C6.20(C2xDic9) | 432,130 |
C6.21(C2×Dic9) = C3×C18.D4 | central extension (φ=1) | 72 | | C6.21(C2xDic9) | 432,164 |