Copied to
clipboard

G = D44⋊C5order 440 = 23·5·11

The semidirect product of D44 and C5 acting faithfully

metacyclic, supersoluble, monomial

Aliases: D44⋊C5, C4⋊F11, C441C10, D221C10, C11⋊C51D4, C111(C5×D4), (C2×F11)⋊1C2, C2.4(C2×F11), C22.3(C2×C10), (C4×C11⋊C5)⋊1C2, (C2×C11⋊C5).3C22, SmallGroup(440,9)

Series: Derived Chief Lower central Upper central

C1C22 — D44⋊C5
C1C11C22C2×C11⋊C5C2×F11 — D44⋊C5
C11C22 — D44⋊C5
C1C2C4

Generators and relations for D44⋊C5
 G = < a,b,c | a44=b2=c5=1, bab=a-1, cac-1=a5, cbc-1=a4b >

22C2
22C2
11C5
11C22
11C22
11C10
22C10
22C10
2D11
2D11
11D4
11C2×C10
11C2×C10
11C20
2F11
2F11
11C5×D4

Character table of D44⋊C5

 class 12A2B2C45A5B5C5D10A10B10C10D10E10F10G10H10I10J10K10L1120A20B20C20D2244A44B
 size 1122222111111111111111122222222222222221022222222101010
ρ111111111111111111111111111111    trivial
ρ2111-1-1111111111-1-1-1111-11-1-1-1-11-1-1    linear of order 2
ρ311-1-1111111111-1-1-1-1-1-1-1-111111111    linear of order 2
ρ411-11-111111111-1111-1-1-111-1-1-1-11-1-1    linear of order 2
ρ5111-1-1ζ52ζ54ζ53ζ5ζ54ζ53ζ52ζ5ζ5453545ζ5ζ52ζ5352153525451-1-1    linear of order 10
ρ611111ζ54ζ53ζ5ζ52ζ53ζ5ζ54ζ52ζ53ζ5ζ53ζ52ζ52ζ54ζ5ζ541ζ5ζ54ζ53ζ52111    linear of order 5
ρ711111ζ53ζ5ζ52ζ54ζ5ζ52ζ53ζ54ζ5ζ52ζ5ζ54ζ54ζ53ζ52ζ531ζ52ζ53ζ5ζ54111    linear of order 5
ρ811-1-11ζ54ζ53ζ5ζ52ζ53ζ5ζ54ζ52535535252545541ζ5ζ54ζ53ζ52111    linear of order 10
ρ9111-1-1ζ5ζ52ζ54ζ53ζ52ζ54ζ5ζ53ζ52545253ζ53ζ5ζ545154552531-1-1    linear of order 10
ρ1011-1-11ζ52ζ54ζ53ζ5ζ54ζ53ζ52ζ5545354555253521ζ53ζ52ζ54ζ5111    linear of order 10
ρ1111-11-1ζ53ζ5ζ52ζ54ζ5ζ52ζ53ζ545ζ52ζ5ζ54545352ζ53152535541-1-1    linear of order 10
ρ1211111ζ5ζ52ζ54ζ53ζ52ζ54ζ5ζ53ζ52ζ54ζ52ζ53ζ53ζ5ζ54ζ51ζ54ζ5ζ52ζ53111    linear of order 5
ρ1311-11-1ζ52ζ54ζ53ζ5ζ54ζ53ζ52ζ554ζ53ζ54ζ555253ζ52153525451-1-1    linear of order 10
ρ1411-1-11ζ53ζ5ζ52ζ54ζ5ζ52ζ53ζ54552554545352531ζ52ζ53ζ5ζ54111    linear of order 10
ρ1511111ζ52ζ54ζ53ζ5ζ54ζ53ζ52ζ5ζ54ζ53ζ54ζ5ζ5ζ52ζ53ζ521ζ53ζ52ζ54ζ5111    linear of order 5
ρ1611-11-1ζ5ζ52ζ54ζ53ζ52ζ54ζ5ζ5352ζ54ζ52ζ5353554ζ5154552531-1-1    linear of order 10
ρ17111-1-1ζ54ζ53ζ5ζ52ζ53ζ5ζ54ζ52ζ5355352ζ52ζ54ζ554155453521-1-1    linear of order 10
ρ18111-1-1ζ53ζ5ζ52ζ54ζ5ζ52ζ53ζ54ζ552554ζ54ζ53ζ5253152535541-1-1    linear of order 10
ρ1911-1-11ζ5ζ52ζ54ζ53ζ52ζ54ζ5ζ53525452535355451ζ54ζ5ζ52ζ53111    linear of order 10
ρ2011-11-1ζ54ζ53ζ5ζ52ζ53ζ5ζ54ζ5253ζ5ζ53ζ5252545ζ54155453521-1-1    linear of order 10
ρ212-20002222-2-2-2-20000000020000-200    orthogonal lifted from D4
ρ222-20005525453-2ζ52-2ζ54-2ζ5-2ζ530000000020000-200    complex lifted from C5×D4
ρ232-20005453552-2ζ53-2ζ5-2ζ54-2ζ520000000020000-200    complex lifted from C5×D4
ρ242-20005355254-2ζ5-2ζ52-2ζ53-2ζ540000000020000-200    complex lifted from C5×D4
ρ252-20005254535-2ζ54-2ζ53-2ζ52-2ζ50000000020000-200    complex lifted from C5×D4
ρ26101000100000000000000000-10000-1-1-1    orthogonal lifted from F11
ρ27101000-100000000000000000-10000-111    orthogonal lifted from C2×F11
ρ2810-100000000000000000000-10000111-11    orthogonal faithful
ρ2910-100000000000000000000-100001-1111    orthogonal faithful

Smallest permutation representation of D44⋊C5
On 44 points
Generators in S44
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 44)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)
(2 10 38 26 6)(3 19 31 7 11)(4 28 24 32 16)(5 37 17 13 21)(8 20 40 44 36)(9 29 33 25 41)(14 30 42 18 22)(15 39 35 43 27)

G:=sub<Sym(44)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29), (2,10,38,26,6)(3,19,31,7,11)(4,28,24,32,16)(5,37,17,13,21)(8,20,40,44,36)(9,29,33,25,41)(14,30,42,18,22)(15,39,35,43,27)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29), (2,10,38,26,6)(3,19,31,7,11)(4,28,24,32,16)(5,37,17,13,21)(8,20,40,44,36)(9,29,33,25,41)(14,30,42,18,22)(15,39,35,43,27) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,44),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29)], [(2,10,38,26,6),(3,19,31,7,11),(4,28,24,32,16),(5,37,17,13,21),(8,20,40,44,36),(9,29,33,25,41),(14,30,42,18,22),(15,39,35,43,27)]])

Matrix representation of D44⋊C5 in GL10(𝔽661)

0044800213448437437448
213044844802130224213224
0213448448448213043700
4370044844800437213448
213437448044804484372130
0213224448004482242130
2130022444821344822400
2132134480224002240448
213213044804374484370448
021300448213224224213448
,
000000166000
000001066000
000010066000
000100066000
001000066000
010000066000
100000066000
000000066000
000000066001
000000066010
,
0000100000
0000000001
0001000000
0000000010
0010000000
0000000100
0100000000
0000001000
1000000000
0000010000

G:=sub<GL(10,GF(661))| [0,213,0,437,213,0,213,213,213,0,0,0,213,0,437,213,0,213,213,213,448,448,448,0,448,224,0,448,0,0,0,448,448,448,0,448,224,0,448,0,0,0,448,448,448,0,448,224,0,448,213,213,213,0,0,0,213,0,437,213,448,0,0,0,448,448,448,0,448,224,437,224,437,437,437,224,224,224,437,224,437,213,0,213,213,213,0,0,0,213,448,224,0,448,0,0,0,448,448,448],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,660,660,660,660,660,660,660,660,660,660,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] >;

D44⋊C5 in GAP, Magma, Sage, TeX

D_{44}\rtimes C_5
% in TeX

G:=Group("D44:C5");
// GroupNames label

G:=SmallGroup(440,9);
// by ID

G=gap.SmallGroup(440,9);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-11,221,106,10004,2264]);
// Polycyclic

G:=Group<a,b,c|a^44=b^2=c^5=1,b*a*b=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^4*b>;
// generators/relations

Export

Subgroup lattice of D44⋊C5 in TeX
Character table of D44⋊C5 in TeX

׿
×
𝔽