direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C2×C11⋊C20, C22⋊C20, C22.F11, Dic11⋊3C10, C11⋊2(C2×C20), (C2×C22).C10, (C2×Dic11)⋊C5, C2.2(C2×F11), C22.4(C2×C10), (C2×C11⋊C5)⋊C4, C11⋊C5⋊2(C2×C4), (C22×C11⋊C5).C2, (C2×C11⋊C5).4C22, SmallGroup(440,10)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C22 — C2×C11⋊C5 — C11⋊C20 — C2×C11⋊C20 |
C11 — C2×C11⋊C20 |
Generators and relations for C2×C11⋊C20
G = < a,b,c | a2=b11=c20=1, ab=ba, ac=ca, cbc-1=b2 >
(1 5)(2 6)(3 7)(4 8)(9 79)(10 80)(11 81)(12 82)(13 83)(14 84)(15 85)(16 86)(17 87)(18 88)(19 69)(20 70)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 52)(30 53)(31 54)(32 55)(33 56)(34 57)(35 58)(36 59)(37 60)(38 61)(39 62)(40 63)(41 64)(42 65)(43 66)(44 67)(45 68)(46 49)(47 50)(48 51)
(1 77 61 69 85 73 53 65 49 81 57)(2 62 86 54 50 58 78 70 74 66 82)(3 87 51 79 75 83 63 55 59 71 67)(4 52 76 64 60 68 88 80 84 56 72)(5 27 38 19 15 23 30 42 46 11 34)(6 39 16 31 47 35 28 20 24 43 12)(7 17 48 9 25 13 40 32 36 21 44)(8 29 26 41 37 45 18 10 14 33 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
G:=sub<Sym(88)| (1,5)(2,6)(3,7)(4,8)(9,79)(10,80)(11,81)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,49)(47,50)(48,51), (1,77,61,69,85,73,53,65,49,81,57)(2,62,86,54,50,58,78,70,74,66,82)(3,87,51,79,75,83,63,55,59,71,67)(4,52,76,64,60,68,88,80,84,56,72)(5,27,38,19,15,23,30,42,46,11,34)(6,39,16,31,47,35,28,20,24,43,12)(7,17,48,9,25,13,40,32,36,21,44)(8,29,26,41,37,45,18,10,14,33,22), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,79)(10,80)(11,81)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,52)(30,53)(31,54)(32,55)(33,56)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,49)(47,50)(48,51), (1,77,61,69,85,73,53,65,49,81,57)(2,62,86,54,50,58,78,70,74,66,82)(3,87,51,79,75,83,63,55,59,71,67)(4,52,76,64,60,68,88,80,84,56,72)(5,27,38,19,15,23,30,42,46,11,34)(6,39,16,31,47,35,28,20,24,43,12)(7,17,48,9,25,13,40,32,36,21,44)(8,29,26,41,37,45,18,10,14,33,22), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,79),(10,80),(11,81),(12,82),(13,83),(14,84),(15,85),(16,86),(17,87),(18,88),(19,69),(20,70),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,52),(30,53),(31,54),(32,55),(33,56),(34,57),(35,58),(36,59),(37,60),(38,61),(39,62),(40,63),(41,64),(42,65),(43,66),(44,67),(45,68),(46,49),(47,50),(48,51)], [(1,77,61,69,85,73,53,65,49,81,57),(2,62,86,54,50,58,78,70,74,66,82),(3,87,51,79,75,83,63,55,59,71,67),(4,52,76,64,60,68,88,80,84,56,72),(5,27,38,19,15,23,30,42,46,11,34),(6,39,16,31,47,35,28,20,24,43,12),(7,17,48,9,25,13,40,32,36,21,44),(8,29,26,41,37,45,18,10,14,33,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 11 | 20A | ··· | 20P | 22A | 22B | 22C |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 11 | 20 | ··· | 20 | 22 | 22 | 22 |
size | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | ··· | 11 | 10 | 11 | ··· | 11 | 10 | 10 | 10 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 | 10 | 10 |
type | + | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C4 | C5 | C10 | C10 | C20 | F11 | C11⋊C20 | C2×F11 |
kernel | C2×C11⋊C20 | C11⋊C20 | C22×C11⋊C5 | C2×C11⋊C5 | C2×Dic11 | Dic11 | C2×C22 | C22 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 4 | 4 | 8 | 4 | 16 | 1 | 2 | 1 |
Matrix representation of C2×C11⋊C20 ►in GL12(𝔽661)
660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 660 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 660 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 660 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 660 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 660 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 660 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 660 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 660 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 660 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 660 |
351 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 471 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 530 | 24 | 0 | 530 | 0 | 131 | 131 | 0 | 530 | 0 |
0 | 0 | 530 | 131 | 530 | 554 | 0 | 0 | 131 | 131 | 0 | 0 |
0 | 0 | 530 | 0 | 530 | 0 | 530 | 24 | 131 | 0 | 0 | 131 |
0 | 0 | 0 | 131 | 530 | 530 | 530 | 131 | 0 | 24 | 0 | 0 |
0 | 0 | 530 | 131 | 0 | 0 | 530 | 0 | 0 | 131 | 530 | 24 |
0 | 0 | 554 | 131 | 530 | 0 | 0 | 131 | 0 | 0 | 530 | 131 |
0 | 0 | 0 | 0 | 554 | 0 | 530 | 131 | 131 | 131 | 530 | 0 |
0 | 0 | 530 | 0 | 0 | 530 | 554 | 131 | 0 | 131 | 0 | 131 |
0 | 0 | 0 | 0 | 530 | 530 | 0 | 0 | 24 | 131 | 530 | 131 |
0 | 0 | 0 | 131 | 0 | 530 | 530 | 0 | 131 | 0 | 554 | 131 |
G:=sub<GL(12,GF(661))| [660,0,0,0,0,0,0,0,0,0,0,0,0,660,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,660,660,660,660,660,660,660,660,660,660],[351,0,0,0,0,0,0,0,0,0,0,0,0,471,0,0,0,0,0,0,0,0,0,0,0,0,530,530,530,0,530,554,0,530,0,0,0,0,24,131,0,131,131,131,0,0,0,131,0,0,0,530,530,530,0,530,554,0,530,0,0,0,530,554,0,530,0,0,0,530,530,530,0,0,0,0,530,530,530,0,530,554,0,530,0,0,131,0,24,131,0,131,131,131,0,0,0,0,131,131,131,0,0,0,131,0,24,131,0,0,0,131,0,24,131,0,131,131,131,0,0,0,530,0,0,0,530,530,530,0,530,554,0,0,0,0,131,0,24,131,0,131,131,131] >;
C2×C11⋊C20 in GAP, Magma, Sage, TeX
C_2\times C_{11}\rtimes C_{20}
% in TeX
G:=Group("C2xC11:C20");
// GroupNames label
G:=SmallGroup(440,10);
// by ID
G=gap.SmallGroup(440,10);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-11,100,10004,2264]);
// Polycyclic
G:=Group<a,b,c|a^2=b^11=c^20=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations
Export