Extensions 1→N→G→Q→1 with N=C4×D28 and Q=C2

Direct product G=N×Q with N=C4×D28 and Q=C2
dρLabelID
C2×C4×D28224C2xC4xD28448,926

Semidirect products G=N:Q with N=C4×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D28)⋊1C2 = C4×D56φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):1C2448,226
(C4×D28)⋊2C2 = D56⋊C4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):2C2448,245
(C4×D28)⋊3C2 = C42.276D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):3C2448,930
(C4×D28)⋊4C2 = C42.277D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):4C2448,932
(C4×D28)⋊5C2 = C427D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):5C2448,974
(C4×D28)⋊6C2 = C42.91D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):6C2448,976
(C4×D28)⋊7C2 = C428D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):7C2448,977
(C4×D28)⋊8C2 = C4210D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):8C2448,980
(C4×D28)⋊9C2 = C42.93D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):9C2448,981
(C4×D28)⋊10C2 = C42.95D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):10C2448,983
(C4×D28)⋊11C2 = C42.99D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):11C2448,987
(C4×D28)⋊12C2 = C42.100D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):12C2448,988
(C4×D28)⋊13C2 = C4223D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):13C2448,1157
(C4×D28)⋊14C2 = C4224D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):14C2448,1158
(C4×D28)⋊15C2 = C42.161D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):15C2448,1160
(C4×D28)⋊16C2 = C42.163D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):16C2448,1162
(C4×D28)⋊17C2 = C4⋊D56φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):17C2448,377
(C4×D28)⋊18C2 = D28.19D4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):18C2448,378
(C4×D28)⋊19C2 = C4×D4⋊D7φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):19C2448,547
(C4×D28)⋊20C2 = C42.48D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):20C2448,548
(C4×D28)⋊21C2 = D28.23D4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):21C2448,591
(C4×D28)⋊22C2 = C282D8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):22C2448,606
(C4×D28)⋊23C2 = C4×D4×D7φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):23C2448,997
(C4×D28)⋊24C2 = C4211D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):24C2448,998
(C4×D28)⋊25C2 = C4212D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):25C2448,1000
(C4×D28)⋊26C2 = C42.228D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):26C2448,1001
(C4×D28)⋊27C2 = D4×D28φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):27C2448,1002
(C4×D28)⋊28C2 = D2823D4φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):28C2448,1003
(C4×D28)⋊29C2 = D2824D4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):29C2448,1004
(C4×D28)⋊30C2 = D45D28φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):30C2448,1007
(C4×D28)⋊31C2 = D46D28φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):31C2448,1008
(C4×D28)⋊32C2 = C42.113D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):32C2448,1011
(C4×D28)⋊33C2 = C42.116D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):33C2448,1015
(C4×D28)⋊34C2 = C42.117D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):34C2448,1016
(C4×D28)⋊35C2 = C42.119D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):35C2448,1018
(C4×D28)⋊36C2 = C4×Q82D7φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):36C2448,1026
(C4×D28)⋊37C2 = C42.126D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):37C2448,1027
(C4×D28)⋊38C2 = Q85D28φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):38C2448,1029
(C4×D28)⋊39C2 = Q86D28φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):39C2448,1030
(C4×D28)⋊40C2 = C42.131D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):40C2448,1033
(C4×D28)⋊41C2 = C42.133D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):41C2448,1035
(C4×D28)⋊42C2 = C42.136D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):42C2448,1038
(C4×D28)⋊43C2 = D2810D4φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):43C2448,1129
(C4×D28)⋊44C2 = Dic1410D4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):44C2448,1130
(C4×D28)⋊45C2 = C4220D14φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):45C2448,1131
(C4×D28)⋊46C2 = C42.143D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):46C2448,1134
(C4×D28)⋊47C2 = C42.150D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):47C2448,1145
(C4×D28)⋊48C2 = C42.153D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):48C2448,1148
(C4×D28)⋊49C2 = D2811D4φ: C2/C1C2 ⊆ Out C4×D28112(C4xD28):49C2448,1170
(C4×D28)⋊50C2 = Dic1411D4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):50C2448,1171
(C4×D28)⋊51C2 = D2812D4φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):51C2448,1179
(C4×D28)⋊52C2 = C42.179D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28):52C2448,1187
(C4×D28)⋊53C2 = C4×C4○D28φ: trivial image224(C4xD28):53C2448,927

Non-split extensions G=N.Q with N=C4×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D28).1C2 = C4.17D56φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).1C2448,16
(C4×D28).2C2 = C86D28φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).2C2448,222
(C4×D28).3C2 = C4×C56⋊C2φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).3C2448,225
(C4×D28).4C2 = C89D28φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).4C2448,240
(C4×D28).5C2 = C42.16D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).5C2448,244
(C4×D28).6C2 = D282C8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).6C2448,40
(C4×D28).7C2 = D28⋊C8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).7C2448,368
(C4×D28).8C2 = D143M4(2)φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).8C2448,370
(C4×D28).9C2 = C282M4(2)φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).9C2448,372
(C4×D28).10C2 = C28⋊SD16φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).10C2448,375
(C4×D28).11C2 = D283Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).11C2448,376
(C4×D28).12C2 = D284Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).12C2448,380
(C4×D28).13C2 = D28.3Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).13C2448,381
(C4×D28).14C2 = C4×Q8⋊D7φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).14C2448,559
(C4×D28).15C2 = C42.56D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).15C2448,560
(C4×D28).16C2 = D28.4Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).16C2448,600
(C4×D28).17C2 = C285SD16φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).17C2448,617
(C4×D28).18C2 = D285Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).18C2448,618
(C4×D28).19C2 = D286Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).19C2448,621
(C4×D28).20C2 = Q8×D28φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).20C2448,1028
(C4×D28).21C2 = D2810Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).21C2448,1032
(C4×D28).22C2 = C42.132D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).22C2448,1034
(C4×D28).23C2 = C42.135D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).23C2448,1037
(C4×D28).24C2 = D287Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).24C2448,1143
(C4×D28).25C2 = C42.152D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).25C2448,1147
(C4×D28).26C2 = D288Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).26C2448,1180
(C4×D28).27C2 = D289Q8φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).27C2448,1183
(C4×D28).28C2 = C42.177D14φ: C2/C1C2 ⊆ Out C4×D28224(C4xD28).28C2448,1185
(C4×D28).29C2 = C8×D28φ: trivial image224(C4xD28).29C2448,220

׿
×
𝔽