Copied to
clipboard

G = C4×D28order 224 = 25·7

Direct product of C4 and D28

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×D28, C285D4, C424D7, C71(C4×D4), C42(C4×D7), (C4×C28)⋊7C2, C284(C2×C4), D141(C2×C4), C14.2(C2×D4), C2.1(C2×D28), D14⋊C417C2, C4⋊Dic716C2, (C2×C4).75D14, (C2×D28).10C2, C14.4(C4○D4), C2.3(C4○D28), C14.4(C22×C4), (C2×C14).14C23, (C2×C28).86C22, C22.11(C22×D7), (C2×Dic7).25C22, (C22×D7).15C22, (C2×C4×D7)⋊7C2, C2.6(C2×C4×D7), SmallGroup(224,68)

Series: Derived Chief Lower central Upper central

C1C14 — C4×D28
C1C7C14C2×C14C22×D7C2×D28 — C4×D28
C7C14 — C4×D28
C1C2×C4C42

Generators and relations for C4×D28
 G = < a,b,c | a4=b28=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 406 in 94 conjugacy classes, 45 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, C28, D14, D14, C2×C14, C4×D4, C4×D7, D28, C2×Dic7, C2×C28, C22×D7, C4⋊Dic7, D14⋊C4, C4×C28, C2×C4×D7, C2×D28, C4×D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, D28, C22×D7, C2×C4×D7, C2×D28, C4○D28, C4×D28

Smallest permutation representation of C4×D28
On 112 points
Generators in S112
(1 66 51 95)(2 67 52 96)(3 68 53 97)(4 69 54 98)(5 70 55 99)(6 71 56 100)(7 72 29 101)(8 73 30 102)(9 74 31 103)(10 75 32 104)(11 76 33 105)(12 77 34 106)(13 78 35 107)(14 79 36 108)(15 80 37 109)(16 81 38 110)(17 82 39 111)(18 83 40 112)(19 84 41 85)(20 57 42 86)(21 58 43 87)(22 59 44 88)(23 60 45 89)(24 61 46 90)(25 62 47 91)(26 63 48 92)(27 64 49 93)(28 65 50 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 51)(30 50)(31 49)(32 48)(33 47)(34 46)(35 45)(36 44)(37 43)(38 42)(39 41)(52 56)(53 55)(57 81)(58 80)(59 79)(60 78)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(82 84)(85 111)(86 110)(87 109)(88 108)(89 107)(90 106)(91 105)(92 104)(93 103)(94 102)(95 101)(96 100)(97 99)

G:=sub<Sym(112)| (1,66,51,95)(2,67,52,96)(3,68,53,97)(4,69,54,98)(5,70,55,99)(6,71,56,100)(7,72,29,101)(8,73,30,102)(9,74,31,103)(10,75,32,104)(11,76,33,105)(12,77,34,106)(13,78,35,107)(14,79,36,108)(15,80,37,109)(16,81,38,110)(17,82,39,111)(18,83,40,112)(19,84,41,85)(20,57,42,86)(21,58,43,87)(22,59,44,88)(23,60,45,89)(24,61,46,90)(25,62,47,91)(26,63,48,92)(27,64,49,93)(28,65,50,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,51)(30,50)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(52,56)(53,55)(57,81)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(82,84)(85,111)(86,110)(87,109)(88,108)(89,107)(90,106)(91,105)(92,104)(93,103)(94,102)(95,101)(96,100)(97,99)>;

G:=Group( (1,66,51,95)(2,67,52,96)(3,68,53,97)(4,69,54,98)(5,70,55,99)(6,71,56,100)(7,72,29,101)(8,73,30,102)(9,74,31,103)(10,75,32,104)(11,76,33,105)(12,77,34,106)(13,78,35,107)(14,79,36,108)(15,80,37,109)(16,81,38,110)(17,82,39,111)(18,83,40,112)(19,84,41,85)(20,57,42,86)(21,58,43,87)(22,59,44,88)(23,60,45,89)(24,61,46,90)(25,62,47,91)(26,63,48,92)(27,64,49,93)(28,65,50,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,51)(30,50)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(52,56)(53,55)(57,81)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(82,84)(85,111)(86,110)(87,109)(88,108)(89,107)(90,106)(91,105)(92,104)(93,103)(94,102)(95,101)(96,100)(97,99) );

G=PermutationGroup([[(1,66,51,95),(2,67,52,96),(3,68,53,97),(4,69,54,98),(5,70,55,99),(6,71,56,100),(7,72,29,101),(8,73,30,102),(9,74,31,103),(10,75,32,104),(11,76,33,105),(12,77,34,106),(13,78,35,107),(14,79,36,108),(15,80,37,109),(16,81,38,110),(17,82,39,111),(18,83,40,112),(19,84,41,85),(20,57,42,86),(21,58,43,87),(22,59,44,88),(23,60,45,89),(24,61,46,90),(25,62,47,91),(26,63,48,92),(27,64,49,93),(28,65,50,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,51),(30,50),(31,49),(32,48),(33,47),(34,46),(35,45),(36,44),(37,43),(38,42),(39,41),(52,56),(53,55),(57,81),(58,80),(59,79),(60,78),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(82,84),(85,111),(86,110),(87,109),(88,108),(89,107),(90,106),(91,105),(92,104),(93,103),(94,102),(95,101),(96,100),(97,99)]])

C4×D28 is a maximal subgroup of
C4.17D56  D282C8  C86D28  C89D28  C42.16D14  D56⋊C4  D28⋊C8  D143M4(2)  C282M4(2)  C28⋊SD16  D283Q8  C4⋊D56  D28.19D4  D284Q8  D28.3Q8  C42.48D14  C42.56D14  D28.23D4  D28.4Q8  C282D8  C285SD16  D285Q8  D286Q8  C42.276D14  C42.277D14  C427D14  C42.91D14  C428D14  C4210D14  C42.93D14  C42.95D14  C42.99D14  C42.100D14  C4×D4×D7  C4211D14  C4212D14  C42.228D14  D2823D4  D2824D4  D45D28  D46D28  C42.113D14  C42.116D14  C42.117D14  C42.119D14  C42.126D14  Q85D28  Q86D28  D2810Q8  C42.131D14  C42.132D14  C42.133D14  C42.135D14  C42.136D14  D2810D4  Dic1410D4  C4220D14  C42.143D14  D287Q8  C42.150D14  C42.152D14  C42.153D14  C4223D14  C4224D14  C42.161D14  C42.163D14  D2811D4  Dic1411D4  D2812D4  D288Q8  D289Q8  C42.177D14  C42.179D14
C4×D28 is a maximal quotient of
C4⋊Dic77C4  (C2×C4)⋊9D28  D14⋊C4⋊C4  C2.(C4×D28)  C86D28  D5611C4  C89D28  C42.16D14  D56⋊C4  Dic28⋊C4  D564C4  C284(C4⋊C4)  (C2×C4)⋊6D28  (C2×C42)⋊D7

68 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14I28A···28AJ
order1222222244444444444477714···1428···28
size11111414141411112222141414142222···22···2

68 irreducible representations

dim11111112222222
type++++++++++
imageC1C2C2C2C2C2C4D4D7C4○D4D14C4×D7D28C4○D28
kernelC4×D28C4⋊Dic7D14⋊C4C4×C28C2×C4×D7C2×D28D28C28C42C14C2×C4C4C4C2
# reps11212182329121212

Matrix representation of C4×D28 in GL3(𝔽29) generated by

1200
0120
0012
,
2800
0224
0517
,
2800
0218
038
G:=sub<GL(3,GF(29))| [12,0,0,0,12,0,0,0,12],[28,0,0,0,2,5,0,24,17],[28,0,0,0,21,3,0,8,8] >;

C4×D28 in GAP, Magma, Sage, TeX

C_4\times D_{28}
% in TeX

G:=Group("C4xD28");
// GroupNames label

G:=SmallGroup(224,68);
// by ID

G=gap.SmallGroup(224,68);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,50,6917]);
// Polycyclic

G:=Group<a,b,c|a^4=b^28=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽