Extensions 1→N→G→Q→1 with N=D4 and Q=C4×D7

Direct product G=N×Q with N=D4 and Q=C4×D7
dρLabelID
C4×D4×D7112C4xD4xD7448,997

Semidirect products G=N:Q with N=D4 and Q=C4×D7
extensionφ:Q→Out NdρLabelID
D41(C4×D7) = Dic74D8φ: C4×D7/Dic7C2 ⊆ Out D4224D4:1(C4xD7)448,290
D42(C4×D7) = D4⋊D7⋊C4φ: C4×D7/Dic7C2 ⊆ Out D4224D4:2(C4xD7)448,319
D43(C4×D7) = C4×D4⋊D7φ: C4×D7/C28C2 ⊆ Out D4224D4:3(C4xD7)448,547
D44(C4×D7) = C42.48D14φ: C4×D7/C28C2 ⊆ Out D4224D4:4(C4xD7)448,548
D45(C4×D7) = D7×D4⋊C4φ: C4×D7/D14C2 ⊆ Out D4112D4:5(C4xD7)448,303
D46(C4×D7) = D4⋊(C4×D7)φ: C4×D7/D14C2 ⊆ Out D4224D4:6(C4xD7)448,305
D47(C4×D7) = D7×C4≀C2φ: C4×D7/D14C2 ⊆ Out D4564D4:7(C4xD7)448,354
D48(C4×D7) = C4×D42D7φ: trivial image224D4:8(C4xD7)448,989
D49(C4×D7) = C4211D14φ: trivial image112D4:9(C4xD7)448,998
D410(C4×D7) = C42.108D14φ: trivial image224D4:10(C4xD7)448,999

Non-split extensions G=N.Q with N=D4 and Q=C4×D7
extensionφ:Q→Out NdρLabelID
D4.1(C4×D7) = D4.D7⋊C4φ: C4×D7/Dic7C2 ⊆ Out D4224D4.1(C4xD7)448,291
D4.2(C4×D7) = Dic76SD16φ: C4×D7/Dic7C2 ⊆ Out D4224D4.2(C4xD7)448,292
D4.3(C4×D7) = M4(2).22D14φ: C4×D7/Dic7C2 ⊆ Out D41124D4.3(C4xD7)448,357
D4.4(C4×D7) = C42.196D14φ: C4×D7/Dic7C2 ⊆ Out D41124D4.4(C4xD7)448,358
D4.5(C4×D7) = C4×D4.D7φ: C4×D7/C28C2 ⊆ Out D4224D4.5(C4xD7)448,551
D4.6(C4×D7) = C42.51D14φ: C4×D7/C28C2 ⊆ Out D4224D4.6(C4xD7)448,552
D4.7(C4×D7) = C56.93D4φ: C4×D7/C28C2 ⊆ Out D41124D4.7(C4xD7)448,678
D4.8(C4×D7) = C56.50D4φ: C4×D7/C28C2 ⊆ Out D41124D4.8(C4xD7)448,679
D4.9(C4×D7) = (D4×D7)⋊C4φ: C4×D7/D14C2 ⊆ Out D4112D4.9(C4xD7)448,304
D4.10(C4×D7) = D42D7⋊C4φ: C4×D7/D14C2 ⊆ Out D4224D4.10(C4xD7)448,306
D4.11(C4×D7) = C42⋊D14φ: C4×D7/D14C2 ⊆ Out D41124D4.11(C4xD7)448,355
D4.12(C4×D7) = D7×C8○D4φ: trivial image1124D4.12(C4xD7)448,1202
D4.13(C4×D7) = C56.49C23φ: trivial image1124D4.13(C4xD7)448,1203

׿
×
𝔽