Copied to
clipboard

G = C56.50D4order 448 = 26·7

50th non-split extension by C56 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.50D4, M4(2).37D14, D4⋊D76C4, C8○D47D7, Q8⋊D76C4, D4.D76C4, C7⋊Q166C4, D4.8(C4×D7), Q8.8(C4×D7), C74(C8.26D4), C56⋊C429C2, C14.82(C4×D4), C4○D4.35D14, D28.19(C2×C4), (C2×C8).191D14, C28.448(C2×D4), C8.47(C7⋊D4), D284C414C2, D42Dic73C2, C28.30(C22×C4), D28.2C414C2, C28.53D414C2, (C2×C28).425C23, (C2×C56).237C22, Dic14.19(C2×C4), D4.8D14.3C2, C4○D28.45C22, C22.4(C4○D28), (C4×Dic7).41C22, C4.Dic7.45C22, (C7×M4(2)).40C22, C7⋊C8.6(C2×C4), C4.30(C2×C4×D7), (C7×C8○D4)⋊7C2, C2.27(C4×C7⋊D4), (C7×D4).15(C2×C4), C4.139(C2×C7⋊D4), (C7×Q8).15(C2×C4), (C2×C7⋊C8).144C22, (C2×C14).10(C4○D4), (C7×C4○D4).40C22, (C2×C4).515(C22×D7), SmallGroup(448,679)

Series: Derived Chief Lower central Upper central

C1C28 — C56.50D4
C1C7C14C28C2×C28C4○D28D4.8D14 — C56.50D4
C7C14C28 — C56.50D4
C1C4C2×C8C8○D4

Generators and relations for C56.50D4
 G = < a,b,c | a56=c2=1, b4=a28, bab-1=a13, cac=a41, cbc=a28b3 >

Subgroups: 412 in 104 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C8⋊C4, C4≀C2, C8.C4, C8○D4, C8○D4, C4○D8, C7⋊C8, C7⋊C8, C56, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8.26D4, C8×D7, C8⋊D7, C2×C7⋊C8, C4.Dic7, C4×Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C4○D28, C7×C4○D4, C56⋊C4, C28.53D4, D284C4, D42Dic7, D28.2C4, D4.8D14, C7×C8○D4, C56.50D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C7⋊D4, C22×D7, C8.26D4, C2×C4×D7, C4○D28, C2×C7⋊D4, C4×C7⋊D4, C56.50D4

Smallest permutation representation of C56.50D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 8 43 50 29 36 15 22)(2 21 44 7 30 49 16 35)(3 34 45 20 31 6 17 48)(4 47 46 33 32 19 18 5)(9 56 51 42 37 28 23 14)(10 13 52 55 38 41 24 27)(11 26 53 12 39 54 25 40)(57 70 71 84 85 98 99 112)(58 83 72 97 86 111 100 69)(59 96 73 110 87 68 101 82)(60 109 74 67 88 81 102 95)(61 66 75 80 89 94 103 108)(62 79 76 93 90 107 104 65)(63 92 77 106 91 64 105 78)
(1 81)(2 66)(3 107)(4 92)(5 77)(6 62)(7 103)(8 88)(9 73)(10 58)(11 99)(12 84)(13 69)(14 110)(15 95)(16 80)(17 65)(18 106)(19 91)(20 76)(21 61)(22 102)(23 87)(24 72)(25 57)(26 98)(27 83)(28 68)(29 109)(30 94)(31 79)(32 64)(33 105)(34 90)(35 75)(36 60)(37 101)(38 86)(39 71)(40 112)(41 97)(42 82)(43 67)(44 108)(45 93)(46 78)(47 63)(48 104)(49 89)(50 74)(51 59)(52 100)(53 85)(54 70)(55 111)(56 96)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,8,43,50,29,36,15,22)(2,21,44,7,30,49,16,35)(3,34,45,20,31,6,17,48)(4,47,46,33,32,19,18,5)(9,56,51,42,37,28,23,14)(10,13,52,55,38,41,24,27)(11,26,53,12,39,54,25,40)(57,70,71,84,85,98,99,112)(58,83,72,97,86,111,100,69)(59,96,73,110,87,68,101,82)(60,109,74,67,88,81,102,95)(61,66,75,80,89,94,103,108)(62,79,76,93,90,107,104,65)(63,92,77,106,91,64,105,78), (1,81)(2,66)(3,107)(4,92)(5,77)(6,62)(7,103)(8,88)(9,73)(10,58)(11,99)(12,84)(13,69)(14,110)(15,95)(16,80)(17,65)(18,106)(19,91)(20,76)(21,61)(22,102)(23,87)(24,72)(25,57)(26,98)(27,83)(28,68)(29,109)(30,94)(31,79)(32,64)(33,105)(34,90)(35,75)(36,60)(37,101)(38,86)(39,71)(40,112)(41,97)(42,82)(43,67)(44,108)(45,93)(46,78)(47,63)(48,104)(49,89)(50,74)(51,59)(52,100)(53,85)(54,70)(55,111)(56,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,8,43,50,29,36,15,22)(2,21,44,7,30,49,16,35)(3,34,45,20,31,6,17,48)(4,47,46,33,32,19,18,5)(9,56,51,42,37,28,23,14)(10,13,52,55,38,41,24,27)(11,26,53,12,39,54,25,40)(57,70,71,84,85,98,99,112)(58,83,72,97,86,111,100,69)(59,96,73,110,87,68,101,82)(60,109,74,67,88,81,102,95)(61,66,75,80,89,94,103,108)(62,79,76,93,90,107,104,65)(63,92,77,106,91,64,105,78), (1,81)(2,66)(3,107)(4,92)(5,77)(6,62)(7,103)(8,88)(9,73)(10,58)(11,99)(12,84)(13,69)(14,110)(15,95)(16,80)(17,65)(18,106)(19,91)(20,76)(21,61)(22,102)(23,87)(24,72)(25,57)(26,98)(27,83)(28,68)(29,109)(30,94)(31,79)(32,64)(33,105)(34,90)(35,75)(36,60)(37,101)(38,86)(39,71)(40,112)(41,97)(42,82)(43,67)(44,108)(45,93)(46,78)(47,63)(48,104)(49,89)(50,74)(51,59)(52,100)(53,85)(54,70)(55,111)(56,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,8,43,50,29,36,15,22),(2,21,44,7,30,49,16,35),(3,34,45,20,31,6,17,48),(4,47,46,33,32,19,18,5),(9,56,51,42,37,28,23,14),(10,13,52,55,38,41,24,27),(11,26,53,12,39,54,25,40),(57,70,71,84,85,98,99,112),(58,83,72,97,86,111,100,69),(59,96,73,110,87,68,101,82),(60,109,74,67,88,81,102,95),(61,66,75,80,89,94,103,108),(62,79,76,93,90,107,104,65),(63,92,77,106,91,64,105,78)], [(1,81),(2,66),(3,107),(4,92),(5,77),(6,62),(7,103),(8,88),(9,73),(10,58),(11,99),(12,84),(13,69),(14,110),(15,95),(16,80),(17,65),(18,106),(19,91),(20,76),(21,61),(22,102),(23,87),(24,72),(25,57),(26,98),(27,83),(28,68),(29,109),(30,94),(31,79),(32,64),(33,105),(34,90),(35,75),(36,60),(37,101),(38,86),(39,71),(40,112),(41,97),(42,82),(43,67),(44,108),(45,93),(46,78),(47,63),(48,104),(49,89),(50,74),(51,59),(52,100),(53,85),(54,70),(55,111),(56,96)]])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G7A7B7C8A8B8C8D8E8F8G8H8I8J14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order122224444444777888888888814141414···1428···2828···2856···5656···56
size1124281124282828222222244282828282224···42···24···42···24···4

82 irreducible representations

dim111111111111222222222244
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D7C4○D4D14D14D14C7⋊D4C4×D7C4×D7C4○D28C8.26D4C56.50D4
kernelC56.50D4C56⋊C4C28.53D4D284C4D42Dic7D28.2C4D4.8D14C7×C8○D4D4⋊D7D4.D7Q8⋊D7C7⋊Q16C56C8○D4C2×C14C2×C8M4(2)C4○D4C8D4Q8C22C7C1
# reps111111112222232333126612212

Matrix representation of C56.50D4 in GL4(𝔽113) generated by

1054900
647600
101013764
1510498
,
45700
686800
11546437
8739849
,
9599040
529404
461128022
109591442
G:=sub<GL(4,GF(113))| [105,64,10,15,49,76,101,10,0,0,37,49,0,0,64,8],[45,68,11,87,7,68,54,39,0,0,64,8,0,0,37,49],[95,52,46,109,99,9,112,59,0,40,80,14,40,4,22,42] >;

C56.50D4 in GAP, Magma, Sage, TeX

C_{56}._{50}D_4
% in TeX

G:=Group("C56.50D4");
// GroupNames label

G:=SmallGroup(448,679);
// by ID

G=gap.SmallGroup(448,679);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,387,58,136,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=c^2=1,b^4=a^28,b*a*b^-1=a^13,c*a*c=a^41,c*b*c=a^28*b^3>;
// generators/relations

׿
×
𝔽