Copied to
clipboard

G = M4(2).22D14order 448 = 26·7

5th non-split extension by M4(2) of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.24D14, M4(2).22D14, C4≀C26D7, D4⋊D73C4, Q8⋊D73C4, C7⋊C8.34D4, D4.D73C4, D4.3(C4×D7), C7⋊Q163C4, Q8.3(C4×D7), C72(C8.26D4), D28.C48C2, D28.6(C2×C4), C4.202(D4×D7), C14.38(C4×D4), Dic14⋊C46C2, C4○D4.20D14, C28.361(C2×D4), Q8.Dic71C2, C28.53D45C2, C28.19(C22×C4), (C4×C28).50C22, Dic14.6(C2×C4), C42.D72C2, (C2×C28).263C23, D4.8D14.1C2, C4○D28.12C22, C4.Dic7.8C22, C22.8(D42D7), C2.22(Dic74D4), (C7×M4(2)).16C22, (C7×C4≀C2)⋊7C2, C7⋊C8.2(C2×C4), C4.19(C2×C4×D7), (C7×D4).6(C2×C4), (C7×Q8).6(C2×C4), (C2×C7⋊C8).50C22, (C7×C4○D4).4C22, (C2×C14).34(C4○D4), (C2×C4).369(C22×D7), SmallGroup(448,357)

Series: Derived Chief Lower central Upper central

C1C28 — M4(2).22D14
C1C7C14C28C2×C28C4○D28D4.8D14 — M4(2).22D14
C7C14C28 — M4(2).22D14
C1C4C2×C4C4≀C2

Generators and relations for M4(2).22D14
 G = < a,b,c,d | a8=b2=c14=1, d2=a6b, bab=a5, cac-1=dad-1=a-1b, cbc-1=a4b, bd=db, dcd-1=a6bc-1 >

Subgroups: 412 in 104 conjugacy classes, 45 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C8⋊C4, C4≀C2, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C7⋊C8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8.26D4, C8×D7, C8⋊D7, C2×C7⋊C8, C2×C7⋊C8, C4.Dic7, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C4×C28, C7×M4(2), C4○D28, C7×C4○D4, C42.D7, Dic14⋊C4, C28.53D4, C7×C4≀C2, D28.C4, Q8.Dic7, D4.8D14, M4(2).22D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C22×D7, C8.26D4, C2×C4×D7, D4×D7, D42D7, Dic74D4, M4(2).22D14

Smallest permutation representation of M4(2).22D14
On 112 points
Generators in S112
(1 96 52 8 17 45 89 24)(2 25 53 97 18 9 90 46)(3 98 54 10 19 47 91 26)(4 27 55 85 20 11 92 48)(5 86 56 12 21 49 93 28)(6 15 43 87 22 13 94 50)(7 88 44 14 23 51 95 16)(29 108 101 76 83 68 61 36)(30 37 102 109 84 77 62 69)(31 110 103 78 71 70 63 38)(32 39 104 111 72 79 64 57)(33 112 105 80 73 58 65 40)(34 41 106 99 74 81 66 59)(35 100 107 82 75 60 67 42)
(1 17)(3 19)(5 21)(7 23)(9 25)(11 27)(13 15)(29 83)(31 71)(33 73)(35 75)(37 77)(39 79)(41 81)(44 95)(46 97)(48 85)(50 87)(52 89)(54 91)(56 93)(57 111)(59 99)(61 101)(63 103)(65 105)(67 107)(69 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 31 52 103 17 71 89 63)(2 62 90 84 18 102 53 30)(3 29 54 101 19 83 91 61)(4 60 92 82 20 100 55 42)(5 41 56 99 21 81 93 59)(6 58 94 80 22 112 43 40)(7 39 44 111 23 79 95 57)(8 70 96 78 24 110 45 38)(9 37 46 109 25 77 97 69)(10 68 98 76 26 108 47 36)(11 35 48 107 27 75 85 67)(12 66 86 74 28 106 49 34)(13 33 50 105 15 73 87 65)(14 64 88 72 16 104 51 32)

G:=sub<Sym(112)| (1,96,52,8,17,45,89,24)(2,25,53,97,18,9,90,46)(3,98,54,10,19,47,91,26)(4,27,55,85,20,11,92,48)(5,86,56,12,21,49,93,28)(6,15,43,87,22,13,94,50)(7,88,44,14,23,51,95,16)(29,108,101,76,83,68,61,36)(30,37,102,109,84,77,62,69)(31,110,103,78,71,70,63,38)(32,39,104,111,72,79,64,57)(33,112,105,80,73,58,65,40)(34,41,106,99,74,81,66,59)(35,100,107,82,75,60,67,42), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,15)(29,83)(31,71)(33,73)(35,75)(37,77)(39,79)(41,81)(44,95)(46,97)(48,85)(50,87)(52,89)(54,91)(56,93)(57,111)(59,99)(61,101)(63,103)(65,105)(67,107)(69,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,31,52,103,17,71,89,63)(2,62,90,84,18,102,53,30)(3,29,54,101,19,83,91,61)(4,60,92,82,20,100,55,42)(5,41,56,99,21,81,93,59)(6,58,94,80,22,112,43,40)(7,39,44,111,23,79,95,57)(8,70,96,78,24,110,45,38)(9,37,46,109,25,77,97,69)(10,68,98,76,26,108,47,36)(11,35,48,107,27,75,85,67)(12,66,86,74,28,106,49,34)(13,33,50,105,15,73,87,65)(14,64,88,72,16,104,51,32)>;

G:=Group( (1,96,52,8,17,45,89,24)(2,25,53,97,18,9,90,46)(3,98,54,10,19,47,91,26)(4,27,55,85,20,11,92,48)(5,86,56,12,21,49,93,28)(6,15,43,87,22,13,94,50)(7,88,44,14,23,51,95,16)(29,108,101,76,83,68,61,36)(30,37,102,109,84,77,62,69)(31,110,103,78,71,70,63,38)(32,39,104,111,72,79,64,57)(33,112,105,80,73,58,65,40)(34,41,106,99,74,81,66,59)(35,100,107,82,75,60,67,42), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,15)(29,83)(31,71)(33,73)(35,75)(37,77)(39,79)(41,81)(44,95)(46,97)(48,85)(50,87)(52,89)(54,91)(56,93)(57,111)(59,99)(61,101)(63,103)(65,105)(67,107)(69,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,31,52,103,17,71,89,63)(2,62,90,84,18,102,53,30)(3,29,54,101,19,83,91,61)(4,60,92,82,20,100,55,42)(5,41,56,99,21,81,93,59)(6,58,94,80,22,112,43,40)(7,39,44,111,23,79,95,57)(8,70,96,78,24,110,45,38)(9,37,46,109,25,77,97,69)(10,68,98,76,26,108,47,36)(11,35,48,107,27,75,85,67)(12,66,86,74,28,106,49,34)(13,33,50,105,15,73,87,65)(14,64,88,72,16,104,51,32) );

G=PermutationGroup([[(1,96,52,8,17,45,89,24),(2,25,53,97,18,9,90,46),(3,98,54,10,19,47,91,26),(4,27,55,85,20,11,92,48),(5,86,56,12,21,49,93,28),(6,15,43,87,22,13,94,50),(7,88,44,14,23,51,95,16),(29,108,101,76,83,68,61,36),(30,37,102,109,84,77,62,69),(31,110,103,78,71,70,63,38),(32,39,104,111,72,79,64,57),(33,112,105,80,73,58,65,40),(34,41,106,99,74,81,66,59),(35,100,107,82,75,60,67,42)], [(1,17),(3,19),(5,21),(7,23),(9,25),(11,27),(13,15),(29,83),(31,71),(33,73),(35,75),(37,77),(39,79),(41,81),(44,95),(46,97),(48,85),(50,87),(52,89),(54,91),(56,93),(57,111),(59,99),(61,101),(63,103),(65,105),(67,107),(69,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,31,52,103,17,71,89,63),(2,62,90,84,18,102,53,30),(3,29,54,101,19,83,91,61),(4,60,92,82,20,100,55,42),(5,41,56,99,21,81,93,59),(6,58,94,80,22,112,43,40),(7,39,44,111,23,79,95,57),(8,70,96,78,24,110,45,38),(9,37,46,109,25,77,97,69),(10,68,98,76,26,108,47,36),(11,35,48,107,27,75,85,67),(12,66,86,74,28,106,49,34),(13,33,50,105,15,73,87,65),(14,64,88,72,16,104,51,32)]])

64 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G7A7B7C8A8B8C8D8E8F8G8H8I8J14A14B14C14D14E14F14G14H14I28A···28F28G···28U28V28W28X56A···56F
order122224444444777888888888814141414141414141428···2828···2828282856···56
size112428112444282224414141414282828282224448882···24···48888···8

64 irreducible representations

dim111111111111222222224444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D7C4○D4D14D14D14C4×D7C4×D7C8.26D4D4×D7D42D7M4(2).22D14
kernelM4(2).22D14C42.D7Dic14⋊C4C28.53D4C7×C4≀C2D28.C4Q8.Dic7D4.8D14D4⋊D7D4.D7Q8⋊D7C7⋊Q16C7⋊C8C4≀C2C2×C14C42M4(2)C4○D4D4Q8C7C4C22C1
# reps1111111122222323336623312

Matrix representation of M4(2).22D14 in GL4(𝔽113) generated by

011200
98000
0001
00150
,
112000
0100
0010
000112
,
01600
16000
000105
0080
,
000106
001060
09900
14000
G:=sub<GL(4,GF(113))| [0,98,0,0,112,0,0,0,0,0,0,15,0,0,1,0],[112,0,0,0,0,1,0,0,0,0,1,0,0,0,0,112],[0,16,0,0,16,0,0,0,0,0,0,8,0,0,105,0],[0,0,0,14,0,0,99,0,0,106,0,0,106,0,0,0] >;

M4(2).22D14 in GAP, Magma, Sage, TeX

M_4(2)._{22}D_{14}
% in TeX

G:=Group("M4(2).22D14");
// GroupNames label

G:=SmallGroup(448,357);
// by ID

G=gap.SmallGroup(448,357);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,219,58,136,1684,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=1,d^2=a^6*b,b*a*b=a^5,c*a*c^-1=d*a*d^-1=a^-1*b,c*b*c^-1=a^4*b,b*d=d*b,d*c*d^-1=a^6*b*c^-1>;
// generators/relations

׿
×
𝔽