extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×Dic7) = C42⋊2Dic7 | φ: C2×Dic7/C14 → C4 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).1(C2xDic7) | 448,98 |
(C2×C4).2(C2×Dic7) = C42.Dic7 | φ: C2×Dic7/C14 → C4 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).2(C2xDic7) | 448,99 |
(C2×C4).3(C2×Dic7) = C42⋊3Dic7 | φ: C2×Dic7/C14 → C4 ⊆ Aut C2×C4 | 56 | 4 | (C2xC4).3(C2xDic7) | 448,102 |
(C2×C4).4(C2×Dic7) = C42.3Dic7 | φ: C2×Dic7/C14 → C4 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).4(C2xDic7) | 448,105 |
(C2×C4).5(C2×Dic7) = (D4×C14).16C4 | φ: C2×Dic7/C14 → C4 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).5(C2xDic7) | 448,771 |
(C2×C4).6(C2×Dic7) = (D4×C14)⋊10C4 | φ: C2×Dic7/C14 → C4 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).6(C2xDic7) | 448,774 |
(C2×C4).7(C2×Dic7) = (D4×C14)⋊C4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).7(C2xDic7) | 448,94 |
(C2×C4).8(C2×Dic7) = C4⋊C4⋊Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).8(C2xDic7) | 448,95 |
(C2×C4).9(C2×Dic7) = C42.7D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).9(C2xDic7) | 448,97 |
(C2×C4).10(C2×Dic7) = C42.8D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).10(C2xDic7) | 448,100 |
(C2×C4).11(C2×Dic7) = C28.9D8 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).11(C2xDic7) | 448,101 |
(C2×C4).12(C2×Dic7) = C28.5Q16 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).12(C2xDic7) | 448,103 |
(C2×C4).13(C2×Dic7) = C28.10D8 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).13(C2xDic7) | 448,104 |
(C2×C4).14(C2×Dic7) = M4(2)⋊Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).14(C2xDic7) | 448,111 |
(C2×C4).15(C2×Dic7) = M4(2)⋊4Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).15(C2xDic7) | 448,116 |
(C2×C4).16(C2×Dic7) = C24.8D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).16(C2xDic7) | 448,485 |
(C2×C4).17(C2×Dic7) = C4⋊C4⋊5Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).17(C2xDic7) | 448,515 |
(C2×C4).18(C2×Dic7) = C4⋊(C4⋊Dic7) | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).18(C2xDic7) | 448,519 |
(C2×C4).19(C2×Dic7) = C42.187D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).19(C2xDic7) | 448,534 |
(C2×C4).20(C2×Dic7) = C28⋊3M4(2) | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).20(C2xDic7) | 448,546 |
(C2×C4).21(C2×Dic7) = C23.47D28 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).21(C2xDic7) | 448,655 |
(C2×C4).22(C2×Dic7) = M4(2).Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).22(C2xDic7) | 448,659 |
(C2×C4).23(C2×Dic7) = (D4×C14)⋊6C4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).23(C2xDic7) | 448,749 |
(C2×C4).24(C2×Dic7) = C2×C28.D4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).24(C2xDic7) | 448,750 |
(C2×C4).25(C2×Dic7) = (Q8×C14)⋊6C4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).25(C2xDic7) | 448,759 |
(C2×C4).26(C2×Dic7) = C2×C28.10D4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).26(C2xDic7) | 448,760 |
(C2×C4).27(C2×Dic7) = (Q8×C14)⋊7C4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).27(C2xDic7) | 448,764 |
(C2×C4).28(C2×Dic7) = C4○D4⋊Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).28(C2xDic7) | 448,766 |
(C2×C4).29(C2×Dic7) = (D4×C14)⋊9C4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).29(C2xDic7) | 448,770 |
(C2×C4).30(C2×Dic7) = C14.422- 1+4 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).30(C2xDic7) | 448,1265 |
(C2×C4).31(C2×Dic7) = C28.76C24 | φ: C2×Dic7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).31(C2xDic7) | 448,1272 |
(C2×C4).32(C2×Dic7) = C4⋊C4×Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).32(C2xDic7) | 448,509 |
(C2×C4).33(C2×Dic7) = D4×C7⋊C8 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).33(C2xDic7) | 448,544 |
(C2×C4).34(C2×Dic7) = C42.47D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).34(C2xDic7) | 448,545 |
(C2×C4).35(C2×Dic7) = C28.C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).35(C2xDic7) | 448,86 |
(C2×C4).36(C2×Dic7) = C28.2C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).36(C2xDic7) | 448,89 |
(C2×C4).37(C2×Dic7) = C28.57D8 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).37(C2xDic7) | 448,91 |
(C2×C4).38(C2×Dic7) = C28.26Q16 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).38(C2xDic7) | 448,92 |
(C2×C4).39(C2×Dic7) = C28.3C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).39(C2xDic7) | 448,112 |
(C2×C4).40(C2×Dic7) = C28.4C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).40(C2xDic7) | 448,115 |
(C2×C4).41(C2×Dic7) = C56.92D4 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | 4 | (C2xC4).41(C2xDic7) | 448,118 |
(C2×C4).42(C2×Dic7) = C28.5C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).42(C2xDic7) | 448,531 |
(C2×C4).43(C2×Dic7) = C42.43D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).43(C2xDic7) | 448,533 |
(C2×C4).44(C2×Dic7) = Q8×C7⋊C8 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).44(C2xDic7) | 448,557 |
(C2×C4).45(C2×Dic7) = C42.210D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).45(C2xDic7) | 448,558 |
(C2×C4).46(C2×Dic7) = M4(2)×Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).46(C2xDic7) | 448,651 |
(C2×C4).47(C2×Dic7) = C28.7C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).47(C2xDic7) | 448,656 |
(C2×C4).48(C2×Dic7) = C56.70C23 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | 4 | (C2xC4).48(C2xDic7) | 448,674 |
(C2×C4).49(C2×Dic7) = C2×D4⋊Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).49(C2xDic7) | 448,748 |
(C2×C4).50(C2×Dic7) = C24.19D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).50(C2xDic7) | 448,755 |
(C2×C4).51(C2×Dic7) = C2×Q8⋊Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).51(C2xDic7) | 448,758 |
(C2×C4).52(C2×Dic7) = C28.(C2×D4) | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).52(C2xDic7) | 448,767 |
(C2×C4).53(C2×Dic7) = (D4×C14).11C4 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).53(C2xDic7) | 448,768 |
(C2×C4).54(C2×Dic7) = C2×D4⋊2Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).54(C2xDic7) | 448,769 |
(C2×C4).55(C2×Dic7) = C2×Q8×Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).55(C2xDic7) | 448,1264 |
(C2×C4).56(C2×Dic7) = C2×Q8.Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).56(C2xDic7) | 448,1271 |
(C2×C4).57(C2×Dic7) = C4×C4.Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).57(C2xDic7) | 448,456 |
(C2×C4).58(C2×Dic7) = C28⋊7M4(2) | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).58(C2xDic7) | 448,458 |
(C2×C4).59(C2×Dic7) = C42.7Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).59(C2xDic7) | 448,460 |
(C2×C4).60(C2×Dic7) = C42⋊4Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).60(C2xDic7) | 448,466 |
(C2×C4).61(C2×Dic7) = C4×C4⋊Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).61(C2xDic7) | 448,468 |
(C2×C4).62(C2×Dic7) = C42⋊9Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).62(C2xDic7) | 448,470 |
(C2×C4).63(C2×Dic7) = C42⋊5Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).63(C2xDic7) | 448,471 |
(C2×C4).64(C2×Dic7) = C24.4Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).64(C2xDic7) | 448,741 |
(C2×C4).65(C2×Dic7) = C4×C23.D7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).65(C2xDic7) | 448,743 |
(C2×C4).66(C2×Dic7) = C24.63D14 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).66(C2xDic7) | 448,745 |
(C2×C4).67(C2×Dic7) = C56⋊2C8 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).67(C2xDic7) | 448,14 |
(C2×C4).68(C2×Dic7) = C56⋊1C8 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).68(C2xDic7) | 448,15 |
(C2×C4).69(C2×Dic7) = C56.16Q8 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 2 | (C2xC4).69(C2xDic7) | 448,20 |
(C2×C4).70(C2×Dic7) = C28.15C42 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).70(C2xDic7) | 448,23 |
(C2×C4).71(C2×Dic7) = C28.8C42 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).71(C2xDic7) | 448,80 |
(C2×C4).72(C2×Dic7) = C42⋊Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).72(C2xDic7) | 448,88 |
(C2×C4).73(C2×Dic7) = C28.9C42 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).73(C2xDic7) | 448,108 |
(C2×C4).74(C2×Dic7) = C28.10C42 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).74(C2xDic7) | 448,109 |
(C2×C4).75(C2×Dic7) = C56.D4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).75(C2xDic7) | 448,110 |
(C2×C4).76(C2×Dic7) = (C2×C56)⋊C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).76(C2xDic7) | 448,113 |
(C2×C4).77(C2×Dic7) = C23.9D28 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).77(C2xDic7) | 448,114 |
(C2×C4).78(C2×Dic7) = C28.21C42 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).78(C2xDic7) | 448,117 |
(C2×C4).79(C2×Dic7) = C42⋊8Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).79(C2xDic7) | 448,469 |
(C2×C4).80(C2×Dic7) = C28.12C42 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).80(C2xDic7) | 448,635 |
(C2×C4).81(C2×Dic7) = C2×C8⋊Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).81(C2xDic7) | 448,638 |
(C2×C4).82(C2×Dic7) = C2×C56⋊1C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).82(C2xDic7) | 448,639 |
(C2×C4).83(C2×Dic7) = C23.22D28 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).83(C2xDic7) | 448,640 |
(C2×C4).84(C2×Dic7) = C2×C56.C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).84(C2xDic7) | 448,641 |
(C2×C4).85(C2×Dic7) = C23.27D28 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).85(C2xDic7) | 448,746 |
(C2×C4).86(C2×Dic7) = C22×C4.Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).86(C2xDic7) | 448,1234 |
(C2×C4).87(C2×Dic7) = C8×C7⋊C8 | central extension (φ=1) | 448 | | (C2xC4).87(C2xDic7) | 448,10 |
(C2×C4).88(C2×Dic7) = C42.279D14 | central extension (φ=1) | 448 | | (C2xC4).88(C2xDic7) | 448,11 |
(C2×C4).89(C2×Dic7) = C56⋊C8 | central extension (φ=1) | 448 | | (C2xC4).89(C2xDic7) | 448,12 |
(C2×C4).90(C2×Dic7) = C4×C7⋊C16 | central extension (φ=1) | 448 | | (C2xC4).90(C2xDic7) | 448,17 |
(C2×C4).91(C2×Dic7) = C56.C8 | central extension (φ=1) | 448 | | (C2xC4).91(C2xDic7) | 448,18 |
(C2×C4).92(C2×Dic7) = C28⋊C16 | central extension (φ=1) | 448 | | (C2xC4).92(C2xDic7) | 448,19 |
(C2×C4).93(C2×Dic7) = C56.91D4 | central extension (φ=1) | 224 | | (C2xC4).93(C2xDic7) | 448,106 |
(C2×C4).94(C2×Dic7) = (C2×C56)⋊5C4 | central extension (φ=1) | 448 | | (C2xC4).94(C2xDic7) | 448,107 |
(C2×C4).95(C2×Dic7) = C2×C4×C7⋊C8 | central extension (φ=1) | 448 | | (C2xC4).95(C2xDic7) | 448,454 |
(C2×C4).96(C2×Dic7) = C2×C42.D7 | central extension (φ=1) | 448 | | (C2xC4).96(C2xDic7) | 448,455 |
(C2×C4).97(C2×Dic7) = C2×C28⋊C8 | central extension (φ=1) | 448 | | (C2xC4).97(C2xDic7) | 448,457 |
(C2×C4).98(C2×Dic7) = C42.6Dic7 | central extension (φ=1) | 224 | | (C2xC4).98(C2xDic7) | 448,459 |
(C2×C4).99(C2×Dic7) = C42×Dic7 | central extension (φ=1) | 448 | | (C2xC4).99(C2xDic7) | 448,464 |
(C2×C4).100(C2×Dic7) = C22×C7⋊C16 | central extension (φ=1) | 448 | | (C2xC4).100(C2xDic7) | 448,630 |
(C2×C4).101(C2×Dic7) = C2×C28.C8 | central extension (φ=1) | 224 | | (C2xC4).101(C2xDic7) | 448,631 |
(C2×C4).102(C2×Dic7) = C2×C8×Dic7 | central extension (φ=1) | 448 | | (C2xC4).102(C2xDic7) | 448,632 |
(C2×C4).103(C2×Dic7) = C2×C56⋊C4 | central extension (φ=1) | 448 | | (C2xC4).103(C2xDic7) | 448,634 |
(C2×C4).104(C2×Dic7) = C2×C28.55D4 | central extension (φ=1) | 224 | | (C2xC4).104(C2xDic7) | 448,740 |
(C2×C4).105(C2×Dic7) = C23×C7⋊C8 | central extension (φ=1) | 448 | | (C2xC4).105(C2xDic7) | 448,1233 |