Copied to
clipboard

G = M4(2)⋊4Dic7order 448 = 26·7

4th semidirect product of M4(2) and Dic7 acting via Dic7/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2)⋊4Dic7, C28.13(C4⋊C4), (C2×C28).13Q8, (C2×C28).112D4, (C2×C4).130D28, (C7×M4(2))⋊7C4, (C2×C14).4C42, C4.4(C4⋊Dic7), (C2×C4).7Dic14, C23.10(C4×D7), C4.51(D14⋊C4), C23.D7.2C4, (C22×C4).64D14, C22.4(C4×Dic7), C28.88(C22⋊C4), C73(M4(2)⋊4C4), C4.13(Dic7⋊C4), (C2×M4(2)).10D7, C4.19(C23.D7), C22.21(D14⋊C4), (C14×M4(2)).14C2, C22.14(Dic7⋊C4), (C22×C28).128C22, C14.18(C2.C42), C2.18(C14.C42), C23.21D14.11C2, (C2×C7⋊C8)⋊3C4, (C2×C28).65(C2×C4), (C2×C4).142(C4×D7), (C2×C14).41(C4⋊C4), (C2×C4).15(C2×Dic7), (C2×C4).235(C7⋊D4), (C22×C14).33(C2×C4), (C2×C4.Dic7).13C2, (C2×C14).12(C22⋊C4), SmallGroup(448,116)

Series: Derived Chief Lower central Upper central

C1C2×C14 — M4(2)⋊4Dic7
C1C7C14C28C2×C28C22×C28C2×C4.Dic7 — M4(2)⋊4Dic7
C7C14C2×C14 — M4(2)⋊4Dic7
C1C4C22×C4C2×M4(2)

Generators and relations for M4(2)⋊4Dic7
 G = < a,b,c,d | a8=b2=c14=1, d2=c7, bab=cac-1=a5, dad-1=a5b, bc=cb, dbd-1=a4b, dcd-1=c-1 >

Subgroups: 324 in 90 conjugacy classes, 47 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, Dic7, C28, C2×C14, C2×C14, C42⋊C2, C2×M4(2), C2×M4(2), C7⋊C8, C56, C2×Dic7, C2×C28, C22×C14, M4(2)⋊4C4, C2×C7⋊C8, C4.Dic7, C4×Dic7, C4⋊Dic7, C23.D7, C2×C56, C7×M4(2), C7×M4(2), C22×C28, C2×C4.Dic7, C23.21D14, C14×M4(2), M4(2)⋊4Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, M4(2)⋊4C4, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C14.C42, M4(2)⋊4Dic7

Smallest permutation representation of M4(2)⋊4Dic7
On 112 points
Generators in S112
(1 102 29 81 11 109 38 74)(2 110 30 75 12 103 39 82)(3 104 31 83 13 111 40 76)(4 112 32 77 14 105 41 84)(5 106 33 71 8 99 42 78)(6 100 34 79 9 107 36 72)(7 108 35 73 10 101 37 80)(15 93 43 59 22 86 50 66)(16 87 44 67 23 94 51 60)(17 95 45 61 24 88 52 68)(18 89 46 69 25 96 53 62)(19 97 47 63 26 90 54 70)(20 91 48 57 27 98 55 64)(21 85 49 65 28 92 56 58)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 26)(9 27)(10 28)(11 22)(12 23)(13 24)(14 25)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 55)(37 56)(38 50)(39 51)(40 52)(41 53)(42 54)(57 72)(58 73)(59 74)(60 75)(61 76)(62 77)(63 78)(64 79)(65 80)(66 81)(67 82)(68 83)(69 84)(70 71)(85 101)(86 102)(87 103)(88 104)(89 105)(90 106)(91 107)(92 108)(93 109)(94 110)(95 111)(96 112)(97 99)(98 100)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 29)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 41)(9 40)(10 39)(11 38)(12 37)(13 36)(14 42)(15 50)(16 56)(17 55)(18 54)(19 53)(20 52)(21 51)(22 43)(23 49)(24 48)(25 47)(26 46)(27 45)(28 44)(57 104 64 111)(58 103 65 110)(59 102 66 109)(60 101 67 108)(61 100 68 107)(62 99 69 106)(63 112 70 105)(71 96 78 89)(72 95 79 88)(73 94 80 87)(74 93 81 86)(75 92 82 85)(76 91 83 98)(77 90 84 97)

G:=sub<Sym(112)| (1,102,29,81,11,109,38,74)(2,110,30,75,12,103,39,82)(3,104,31,83,13,111,40,76)(4,112,32,77,14,105,41,84)(5,106,33,71,8,99,42,78)(6,100,34,79,9,107,36,72)(7,108,35,73,10,101,37,80)(15,93,43,59,22,86,50,66)(16,87,44,67,23,94,51,60)(17,95,45,61,24,88,52,68)(18,89,46,69,25,96,53,62)(19,97,47,63,26,90,54,70)(20,91,48,57,27,98,55,64)(21,85,49,65,28,92,56,58), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,26)(9,27)(10,28)(11,22)(12,23)(13,24)(14,25)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,55)(37,56)(38,50)(39,51)(40,52)(41,53)(42,54)(57,72)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,71)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(91,107)(92,108)(93,109)(94,110)(95,111)(96,112)(97,99)(98,100), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,29)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,42)(15,50)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,43)(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(57,104,64,111)(58,103,65,110)(59,102,66,109)(60,101,67,108)(61,100,68,107)(62,99,69,106)(63,112,70,105)(71,96,78,89)(72,95,79,88)(73,94,80,87)(74,93,81,86)(75,92,82,85)(76,91,83,98)(77,90,84,97)>;

G:=Group( (1,102,29,81,11,109,38,74)(2,110,30,75,12,103,39,82)(3,104,31,83,13,111,40,76)(4,112,32,77,14,105,41,84)(5,106,33,71,8,99,42,78)(6,100,34,79,9,107,36,72)(7,108,35,73,10,101,37,80)(15,93,43,59,22,86,50,66)(16,87,44,67,23,94,51,60)(17,95,45,61,24,88,52,68)(18,89,46,69,25,96,53,62)(19,97,47,63,26,90,54,70)(20,91,48,57,27,98,55,64)(21,85,49,65,28,92,56,58), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,26)(9,27)(10,28)(11,22)(12,23)(13,24)(14,25)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,55)(37,56)(38,50)(39,51)(40,52)(41,53)(42,54)(57,72)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,71)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(91,107)(92,108)(93,109)(94,110)(95,111)(96,112)(97,99)(98,100), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,29)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,42)(15,50)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,43)(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(57,104,64,111)(58,103,65,110)(59,102,66,109)(60,101,67,108)(61,100,68,107)(62,99,69,106)(63,112,70,105)(71,96,78,89)(72,95,79,88)(73,94,80,87)(74,93,81,86)(75,92,82,85)(76,91,83,98)(77,90,84,97) );

G=PermutationGroup([[(1,102,29,81,11,109,38,74),(2,110,30,75,12,103,39,82),(3,104,31,83,13,111,40,76),(4,112,32,77,14,105,41,84),(5,106,33,71,8,99,42,78),(6,100,34,79,9,107,36,72),(7,108,35,73,10,101,37,80),(15,93,43,59,22,86,50,66),(16,87,44,67,23,94,51,60),(17,95,45,61,24,88,52,68),(18,89,46,69,25,96,53,62),(19,97,47,63,26,90,54,70),(20,91,48,57,27,98,55,64),(21,85,49,65,28,92,56,58)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,26),(9,27),(10,28),(11,22),(12,23),(13,24),(14,25),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,55),(37,56),(38,50),(39,51),(40,52),(41,53),(42,54),(57,72),(58,73),(59,74),(60,75),(61,76),(62,77),(63,78),(64,79),(65,80),(66,81),(67,82),(68,83),(69,84),(70,71),(85,101),(86,102),(87,103),(88,104),(89,105),(90,106),(91,107),(92,108),(93,109),(94,110),(95,111),(96,112),(97,99),(98,100)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,29),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,41),(9,40),(10,39),(11,38),(12,37),(13,36),(14,42),(15,50),(16,56),(17,55),(18,54),(19,53),(20,52),(21,51),(22,43),(23,49),(24,48),(25,47),(26,46),(27,45),(28,44),(57,104,64,111),(58,103,65,110),(59,102,66,109),(60,101,67,108),(61,100,68,107),(62,99,69,106),(63,112,70,105),(71,96,78,89),(72,95,79,88),(73,94,80,87),(74,93,81,86),(75,92,82,85),(76,91,83,98),(77,90,84,97)]])

82 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D8E8F8G8H14A···14I14J···14O28A···28L28M···28R56A···56X
order122224444444447778888888814···1414···1428···2828···2856···56
size1122211222282828282224444282828282···24···42···24···44···4

82 irreducible representations

dim1111111222222222244
type+++++-+-+-+
imageC1C2C2C2C4C4C4D4Q8D7Dic7D14Dic14C4×D7D28C7⋊D4C4×D7M4(2)⋊4C4M4(2)⋊4Dic7
kernelM4(2)⋊4Dic7C2×C4.Dic7C23.21D14C14×M4(2)C2×C7⋊C8C23.D7C7×M4(2)C2×C28C2×C28C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C2×C4C23C7C1
# reps111144431363666126212

Matrix representation of M4(2)⋊4Dic7 in GL4(𝔽113) generated by

221016924
12918944
601079112
63810122
,
2210100
129100
221019112
129110122
,
0100
1127900
010112
11279134
,
96700
10010400
1290980
211015815
G:=sub<GL(4,GF(113))| [22,12,60,6,101,91,107,38,69,89,91,101,24,44,12,22],[22,12,22,12,101,91,101,91,0,0,91,101,0,0,12,22],[0,112,0,112,1,79,1,79,0,0,0,1,0,0,112,34],[9,100,12,21,67,104,90,101,0,0,98,58,0,0,0,15] >;

M4(2)⋊4Dic7 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_4{\rm Dic}_7
% in TeX

G:=Group("M4(2):4Dic7");
// GroupNames label

G:=SmallGroup(448,116);
// by ID

G=gap.SmallGroup(448,116);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,184,1123,136,851,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=1,d^2=c^7,b*a*b=c*a*c^-1=a^5,d*a*d^-1=a^5*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽