Extensions 1→N→G→Q→1 with N=C2×D56 and Q=C2

Direct product G=N×Q with N=C2×D56 and Q=C2
dρLabelID
C22×D56224C2^2xD56448,1193

Semidirect products G=N:Q with N=C2×D56 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D56)⋊1C2 = C284D8φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):1C2448,229
(C2×D56)⋊2C2 = D2813D4φ: C2/C1C2 ⊆ Out C2×D56112(C2xD56):2C2448,266
(C2×D56)⋊3C2 = D2814D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):3C2448,268
(C2×D56)⋊4C2 = D4⋊D28φ: C2/C1C2 ⊆ Out C2×D56112(C2xD56):4C2448,307
(C2×D56)⋊5C2 = D283D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):5C2448,320
(C2×D56)⋊6C2 = D284D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):6C2448,345
(C2×D56)⋊7C2 = C4⋊D56φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):7C2448,377
(C2×D56)⋊8C2 = C2×D112φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):8C2448,436
(C2×D56)⋊9C2 = C5629D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):9C2448,649
(C2×D56)⋊10C2 = C8⋊D28φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):10C2448,246
(C2×D56)⋊11C2 = C16⋊D14φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56):11C2448,442
(C2×D56)⋊12C2 = C563D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):12C2448,669
(C2×D56)⋊13C2 = D4.4D28φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56):13C2448,676
(C2×D56)⋊14C2 = C2×C8⋊D14φ: C2/C1C2 ⊆ Out C2×D56112(C2xD56):14C2448,1199
(C2×D56)⋊15C2 = D4.12D28φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56):15C2448,1205
(C2×D56)⋊16C2 = C87D28φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):16C2448,417
(C2×D56)⋊17C2 = C2×C7⋊D16φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):17C2448,680
(C2×D56)⋊18C2 = C565D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):18C2448,685
(C2×D56)⋊19C2 = C2×D7×D8φ: C2/C1C2 ⊆ Out C2×D56112(C2xD56):19C2448,1207
(C2×D56)⋊20C2 = C2×Q8.D14φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):20C2448,1218
(C2×D56)⋊21C2 = C8.21D28φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56):21C2448,431
(C2×D56)⋊22C2 = Q16⋊D14φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56):22C2448,727
(C2×D56)⋊23C2 = D815D14φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56):23C2448,1222
(C2×D56)⋊24C2 = C567D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):24C2448,399
(C2×D56)⋊25C2 = C569D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56):25C2448,710
(C2×D56)⋊26C2 = C2×D56⋊C2φ: C2/C1C2 ⊆ Out C2×D56112(C2xD56):26C2448,1212
(C2×D56)⋊27C2 = C2×D567C2φ: trivial image224(C2xD56):27C2448,1194

Non-split extensions G=N.Q with N=C2×D56 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D56).1C2 = C2.D112φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).1C2448,66
(C2×D56).2C2 = C8.8D28φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).2C2448,230
(C2×D56).3C2 = D28.12D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).3C2448,353
(C2×D56).4C2 = D28.19D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).4C2448,378
(C2×D56).5C2 = C2×C112⋊C2φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).5C2448,437
(C2×D56).6C2 = C28.3D8φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56).6C2448,73
(C2×D56).7C2 = D56⋊C4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).7C2448,245
(C2×D56).8C2 = C14.D16φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).8C2448,48
(C2×D56).9C2 = Dic75D8φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).9C2448,406
(C2×D56).10C2 = C2×C7⋊SD32φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).10C2448,712
(C2×D56).11C2 = C56.28D4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).11C2448,725
(C2×D56).12C2 = D56.C4φ: C2/C1C2 ⊆ Out C2×D561124+(C2xD56).12C2448,52
(C2×D56).13C2 = D569C4φ: C2/C1C2 ⊆ Out C2×D56224(C2xD56).13C2448,403
(C2×D56).14C2 = C4×D56φ: trivial image224(C2xD56).14C2448,226

׿
×
𝔽