Copied to
clipboard

G = C28.3D8order 448 = 26·7

3rd non-split extension by C28 of D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.3D8, D56.2C4, C4.11D56, C56.80D4, M5(2)⋊5D7, C8.4(C4×D7), C56.1(C2×C4), (C2×C4).9D28, (C2×D56).6C2, (C2×C28).99D4, (C2×C8).46D14, C72(M5(2)⋊C2), C8.37(C7⋊D4), (C7×M5(2))⋊9C2, C56.C411C2, (C2×C14).8SD16, C4.18(D14⋊C4), (C2×C56).50C22, C2.9(C2.D56), C28.42(C22⋊C4), C22.6(C56⋊C2), C14.17(D4⋊C4), SmallGroup(448,73)

Series: Derived Chief Lower central Upper central

C1C56 — C28.3D8
C1C7C14C28C56C2×C56C2×D56 — C28.3D8
C7C14C28C56 — C28.3D8
C1C2C2×C4C2×C8M5(2)

Generators and relations for C28.3D8
 G = < a,b,c | a28=1, b8=a14, c2=a7, bab-1=a15, cac-1=a13, cbc-1=a21b7 >

Subgroups: 564 in 62 conjugacy classes, 25 normal (23 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C8, C2×C4, D4, C23, D7, C14, C14, C16, C2×C8, M4(2), D8, C2×D4, C28, D14, C2×C14, C8.C4, M5(2), C2×D8, C7⋊C8, C56, D28, C2×C28, C22×D7, M5(2)⋊C2, C112, D56, D56, C4.Dic7, C2×C56, C2×D28, C56.C4, C7×M5(2), C2×D56, C28.3D8
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, D14, D4⋊C4, C4×D7, D28, C7⋊D4, M5(2)⋊C2, C56⋊C2, D56, D14⋊C4, C2.D56, C28.3D8

Smallest permutation representation of C28.3D8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 111 48 69 8 104 55 62 15 97 34 83 22 90 41 76)(2 98 49 84 9 91 56 77 16 112 35 70 23 105 42 63)(3 85 50 71 10 106 29 64 17 99 36 57 24 92 43 78)(4 100 51 58 11 93 30 79 18 86 37 72 25 107 44 65)(5 87 52 73 12 108 31 66 19 101 38 59 26 94 45 80)(6 102 53 60 13 95 32 81 20 88 39 74 27 109 46 67)(7 89 54 75 14 110 33 68 21 103 40 61 28 96 47 82)
(1 97 8 104 15 111 22 90)(2 110 9 89 16 96 23 103)(3 95 10 102 17 109 24 88)(4 108 11 87 18 94 25 101)(5 93 12 100 19 107 26 86)(6 106 13 85 20 92 27 99)(7 91 14 98 21 105 28 112)(29 67 36 74 43 81 50 60)(30 80 37 59 44 66 51 73)(31 65 38 72 45 79 52 58)(32 78 39 57 46 64 53 71)(33 63 40 70 47 77 54 84)(34 76 41 83 48 62 55 69)(35 61 42 68 49 75 56 82)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,111,48,69,8,104,55,62,15,97,34,83,22,90,41,76)(2,98,49,84,9,91,56,77,16,112,35,70,23,105,42,63)(3,85,50,71,10,106,29,64,17,99,36,57,24,92,43,78)(4,100,51,58,11,93,30,79,18,86,37,72,25,107,44,65)(5,87,52,73,12,108,31,66,19,101,38,59,26,94,45,80)(6,102,53,60,13,95,32,81,20,88,39,74,27,109,46,67)(7,89,54,75,14,110,33,68,21,103,40,61,28,96,47,82), (1,97,8,104,15,111,22,90)(2,110,9,89,16,96,23,103)(3,95,10,102,17,109,24,88)(4,108,11,87,18,94,25,101)(5,93,12,100,19,107,26,86)(6,106,13,85,20,92,27,99)(7,91,14,98,21,105,28,112)(29,67,36,74,43,81,50,60)(30,80,37,59,44,66,51,73)(31,65,38,72,45,79,52,58)(32,78,39,57,46,64,53,71)(33,63,40,70,47,77,54,84)(34,76,41,83,48,62,55,69)(35,61,42,68,49,75,56,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,111,48,69,8,104,55,62,15,97,34,83,22,90,41,76)(2,98,49,84,9,91,56,77,16,112,35,70,23,105,42,63)(3,85,50,71,10,106,29,64,17,99,36,57,24,92,43,78)(4,100,51,58,11,93,30,79,18,86,37,72,25,107,44,65)(5,87,52,73,12,108,31,66,19,101,38,59,26,94,45,80)(6,102,53,60,13,95,32,81,20,88,39,74,27,109,46,67)(7,89,54,75,14,110,33,68,21,103,40,61,28,96,47,82), (1,97,8,104,15,111,22,90)(2,110,9,89,16,96,23,103)(3,95,10,102,17,109,24,88)(4,108,11,87,18,94,25,101)(5,93,12,100,19,107,26,86)(6,106,13,85,20,92,27,99)(7,91,14,98,21,105,28,112)(29,67,36,74,43,81,50,60)(30,80,37,59,44,66,51,73)(31,65,38,72,45,79,52,58)(32,78,39,57,46,64,53,71)(33,63,40,70,47,77,54,84)(34,76,41,83,48,62,55,69)(35,61,42,68,49,75,56,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,111,48,69,8,104,55,62,15,97,34,83,22,90,41,76),(2,98,49,84,9,91,56,77,16,112,35,70,23,105,42,63),(3,85,50,71,10,106,29,64,17,99,36,57,24,92,43,78),(4,100,51,58,11,93,30,79,18,86,37,72,25,107,44,65),(5,87,52,73,12,108,31,66,19,101,38,59,26,94,45,80),(6,102,53,60,13,95,32,81,20,88,39,74,27,109,46,67),(7,89,54,75,14,110,33,68,21,103,40,61,28,96,47,82)], [(1,97,8,104,15,111,22,90),(2,110,9,89,16,96,23,103),(3,95,10,102,17,109,24,88),(4,108,11,87,18,94,25,101),(5,93,12,100,19,107,26,86),(6,106,13,85,20,92,27,99),(7,91,14,98,21,105,28,112),(29,67,36,74,43,81,50,60),(30,80,37,59,44,66,51,73),(31,65,38,72,45,79,52,58),(32,78,39,57,46,64,53,71),(33,63,40,70,47,77,54,84),(34,76,41,83,48,62,55,69),(35,61,42,68,49,75,56,82)]])

76 conjugacy classes

class 1 2A2B2C2D4A4B7A7B7C8A8B8C8D8E14A14B14C14D14E14F16A16B16C16D28A···28F28G28H28I56A···56L56M···56R112A···112X
order1222244777888881414141414141616161628···2828282856···5656···56112···112
size112565622222224565622244444442···24442···24···44···4

76 irreducible representations

dim111112222222222244
type+++++++++++++
imageC1C2C2C2C4D4D4D7D8SD16D14C4×D7C7⋊D4D28D56C56⋊C2M5(2)⋊C2C28.3D8
kernelC28.3D8C56.C4C7×M5(2)C2×D56D56C56C2×C28M5(2)C28C2×C14C2×C8C8C8C2×C4C4C22C7C1
# reps111141132236661212212

Matrix representation of C28.3D8 in GL4(𝔽113) generated by

133200
14600
32585881
75132109
,
5133043
47887055
142610480
0423396
,
10772741
7686725
465417108
243710416
G:=sub<GL(4,GF(113))| [13,1,32,7,32,46,58,51,0,0,58,32,0,0,81,109],[51,47,14,0,33,88,26,42,0,70,104,33,43,55,80,96],[107,76,46,24,72,86,54,37,74,72,17,104,1,5,108,16] >;

C28.3D8 in GAP, Magma, Sage, TeX

C_{28}._3D_8
% in TeX

G:=Group("C28.3D8");
// GroupNames label

G:=SmallGroup(448,73);
// by ID

G=gap.SmallGroup(448,73);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,85,92,422,387,268,570,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^8=a^14,c^2=a^7,b*a*b^-1=a^15,c*a*c^-1=a^13,c*b*c^-1=a^21*b^7>;
// generators/relations

׿
×
𝔽