Copied to
clipboard

G = D56.C4order 448 = 26·7

4th non-split extension by D56 of C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.7D4, D56.4C4, C8.17D28, C28.48D8, C8.2(C4×D7), C56.22(C2×C4), C8.C41D7, (C2×C28).95D4, (C2×C8).43D14, C28.C85C2, C4.21(D4⋊D7), C4.4(D14⋊C4), (C2×D56).12C2, C71(M5(2)⋊C2), (C2×C14).4SD16, C28.4(C22⋊C4), C22.3(Q8⋊D7), C14.7(D4⋊C4), C2.9(C14.D8), (C2×C56).100C22, (C7×C8.C4)⋊9C2, (C2×C4).18(C7⋊D4), SmallGroup(448,52)

Series: Derived Chief Lower central Upper central

C1C56 — D56.C4
C1C7C14C28C2×C28C2×C56C2×D56 — D56.C4
C7C14C28C56 — D56.C4
C1C2C2×C4C2×C8C8.C4

Generators and relations for D56.C4
 G = < a,b,c | a56=b2=1, c4=a28, bab=a-1, cac-1=a43, cbc-1=a7b >

Subgroups: 540 in 62 conjugacy classes, 25 normal (23 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C8, C2×C4, D4, C23, D7, C14, C14, C16, C2×C8, M4(2), D8, C2×D4, C28, D14, C2×C14, C8.C4, M5(2), C2×D8, C56, C56, D28, C2×C28, C22×D7, M5(2)⋊C2, C7⋊C16, D56, D56, C2×C56, C7×M4(2), C2×D28, C28.C8, C7×C8.C4, C2×D56, D56.C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, D14, D4⋊C4, C4×D7, D28, C7⋊D4, M5(2)⋊C2, D14⋊C4, D4⋊D7, Q8⋊D7, C14.D8, D56.C4

Smallest permutation representation of D56.C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(57 91)(58 90)(59 89)(60 88)(61 87)(62 86)(63 85)(64 84)(65 83)(66 82)(67 81)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)
(1 71 43 85 29 99 15 57)(2 58 44 72 30 86 16 100)(3 101 45 59 31 73 17 87)(4 88 46 102 32 60 18 74)(5 75 47 89 33 103 19 61)(6 62 48 76 34 90 20 104)(7 105 49 63 35 77 21 91)(8 92 50 106 36 64 22 78)(9 79 51 93 37 107 23 65)(10 66 52 80 38 94 24 108)(11 109 53 67 39 81 25 95)(12 96 54 110 40 68 26 82)(13 83 55 97 41 111 27 69)(14 70 56 84 42 98 28 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,91)(58,90)(59,89)(60,88)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,71,43,85,29,99,15,57)(2,58,44,72,30,86,16,100)(3,101,45,59,31,73,17,87)(4,88,46,102,32,60,18,74)(5,75,47,89,33,103,19,61)(6,62,48,76,34,90,20,104)(7,105,49,63,35,77,21,91)(8,92,50,106,36,64,22,78)(9,79,51,93,37,107,23,65)(10,66,52,80,38,94,24,108)(11,109,53,67,39,81,25,95)(12,96,54,110,40,68,26,82)(13,83,55,97,41,111,27,69)(14,70,56,84,42,98,28,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,91)(58,90)(59,89)(60,88)(61,87)(62,86)(63,85)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,71,43,85,29,99,15,57)(2,58,44,72,30,86,16,100)(3,101,45,59,31,73,17,87)(4,88,46,102,32,60,18,74)(5,75,47,89,33,103,19,61)(6,62,48,76,34,90,20,104)(7,105,49,63,35,77,21,91)(8,92,50,106,36,64,22,78)(9,79,51,93,37,107,23,65)(10,66,52,80,38,94,24,108)(11,109,53,67,39,81,25,95)(12,96,54,110,40,68,26,82)(13,83,55,97,41,111,27,69)(14,70,56,84,42,98,28,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(57,91),(58,90),(59,89),(60,88),(61,87),(62,86),(63,85),(64,84),(65,83),(66,82),(67,81),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)], [(1,71,43,85,29,99,15,57),(2,58,44,72,30,86,16,100),(3,101,45,59,31,73,17,87),(4,88,46,102,32,60,18,74),(5,75,47,89,33,103,19,61),(6,62,48,76,34,90,20,104),(7,105,49,63,35,77,21,91),(8,92,50,106,36,64,22,78),(9,79,51,93,37,107,23,65),(10,66,52,80,38,94,24,108),(11,109,53,67,39,81,25,95),(12,96,54,110,40,68,26,82),(13,83,55,97,41,111,27,69),(14,70,56,84,42,98,28,112)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B7A7B7C8A8B8C8D8E14A14B14C14D14E14F16A16B16C16D28A···28F28G28H28I56A···56L56M···56X
order1222244777888881414141414141616161628···2828282856···5656···56
size11256562222222488222444282828282···24444···48···8

58 irreducible representations

dim111112222222224444
type++++++++++++++
imageC1C2C2C2C4D4D4D7D8SD16D14C4×D7D28C7⋊D4M5(2)⋊C2D4⋊D7Q8⋊D7D56.C4
kernelD56.C4C28.C8C7×C8.C4C2×D56D56C56C2×C28C8.C4C28C2×C14C2×C8C8C8C2×C4C7C4C22C1
# reps1111411322366623312

Matrix representation of D56.C4 in GL4(𝔽113) generated by

524400
699100
0033106
00791
,
80700
63300
003617
009077
,
0010
0001
9610500
81700
G:=sub<GL(4,GF(113))| [52,69,0,0,44,91,0,0,0,0,33,7,0,0,106,91],[80,6,0,0,7,33,0,0,0,0,36,90,0,0,17,77],[0,0,96,8,0,0,105,17,1,0,0,0,0,1,0,0] >;

D56.C4 in GAP, Magma, Sage, TeX

D_{56}.C_4
% in TeX

G:=Group("D56.C4");
// GroupNames label

G:=SmallGroup(448,52);
// by ID

G=gap.SmallGroup(448,52);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,141,36,758,184,675,794,192,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=1,c^4=a^28,b*a*b=a^-1,c*a*c^-1=a^43,c*b*c^-1=a^7*b>;
// generators/relations

׿
×
𝔽