Copied to
clipboard

G = D4.4D28order 448 = 26·7

4th non-split extension by D4 of D28 acting via D28/C28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.4D28, C56.83D4, Q8.4D28, M4(2).34D14, C8○D42D7, (C2×D56)⋊13C2, (C7×D4).21D4, C4.20(C2×D28), C28.43(C2×D4), (C2×C8).81D14, (C7×Q8).21D4, D4⋊D143C2, C4○D4.32D14, C73(D4.4D4), C8.40(C7⋊D4), C56.C415C2, (C2×C56).67C22, C28.46D414C2, C14.77(C4⋊D4), C2.25(C287D4), (C2×C28).422C23, C22.9(C4○D28), (C2×D28).112C22, C4.Dic7.17C22, (C7×M4(2)).37C22, (C7×C8○D4)⋊2C2, C4.118(C2×C7⋊D4), (C2×C14).7(C4○D4), (C7×C4○D4).37C22, (C2×C4).124(C22×D7), SmallGroup(448,676)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D4.4D28
C1C7C14C28C2×C28C2×D28C2×D56 — D4.4D28
C7C14C2×C28 — D4.4D28
C1C2C2×C4C8○D4

Generators and relations for D4.4D28
 G = < a,b,c,d | a4=b2=d2=1, c28=a2, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=a2c27 >

Subgroups: 700 in 108 conjugacy classes, 39 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C2×D4, C4○D4, C28, C28, D14, C2×C14, C2×C14, C4.D4, C8.C4, C8○D4, C2×D8, C8⋊C22, C7⋊C8, C56, C56, D28, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×D7, D4.4D4, D56, C4.Dic7, D4⋊D7, Q8⋊D7, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C2×D28, C7×C4○D4, C56.C4, C28.46D4, C2×D56, D4⋊D14, C7×C8○D4, D4.4D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, D28, C7⋊D4, C22×D7, D4.4D4, C2×D28, C4○D28, C2×C7⋊D4, C287D4, D4.4D28

Smallest permutation representation of D4.4D28
On 112 points
Generators in S112
(1 43 29 15)(2 44 30 16)(3 45 31 17)(4 46 32 18)(5 47 33 19)(6 48 34 20)(7 49 35 21)(8 50 36 22)(9 51 37 23)(10 52 38 24)(11 53 39 25)(12 54 40 26)(13 55 41 27)(14 56 42 28)(57 71 85 99)(58 72 86 100)(59 73 87 101)(60 74 88 102)(61 75 89 103)(62 76 90 104)(63 77 91 105)(64 78 92 106)(65 79 93 107)(66 80 94 108)(67 81 95 109)(68 82 96 110)(69 83 97 111)(70 84 98 112)
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 111)(8 112)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 97)(50 98)(51 99)(52 100)(53 101)(54 102)(55 103)(56 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 56)(2 55)(3 54)(4 53)(5 52)(6 51)(7 50)(8 49)(9 48)(10 47)(11 46)(12 45)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(57 82)(58 81)(59 80)(60 79)(61 78)(62 77)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)(83 112)(84 111)(85 110)(86 109)(87 108)(88 107)(89 106)(90 105)(91 104)(92 103)(93 102)(94 101)(95 100)(96 99)(97 98)

G:=sub<Sym(112)| (1,43,29,15)(2,44,30,16)(3,45,31,17)(4,46,32,18)(5,47,33,19)(6,48,34,20)(7,49,35,21)(8,50,36,22)(9,51,37,23)(10,52,38,24)(11,53,39,25)(12,54,40,26)(13,55,41,27)(14,56,42,28)(57,71,85,99)(58,72,86,100)(59,73,87,101)(60,74,88,102)(61,75,89,103)(62,76,90,104)(63,77,91,105)(64,78,92,106)(65,79,93,107)(66,80,94,108)(67,81,95,109)(68,82,96,110)(69,83,97,111)(70,84,98,112), (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,111)(8,112)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(57,82)(58,81)(59,80)(60,79)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(83,112)(84,111)(85,110)(86,109)(87,108)(88,107)(89,106)(90,105)(91,104)(92,103)(93,102)(94,101)(95,100)(96,99)(97,98)>;

G:=Group( (1,43,29,15)(2,44,30,16)(3,45,31,17)(4,46,32,18)(5,47,33,19)(6,48,34,20)(7,49,35,21)(8,50,36,22)(9,51,37,23)(10,52,38,24)(11,53,39,25)(12,54,40,26)(13,55,41,27)(14,56,42,28)(57,71,85,99)(58,72,86,100)(59,73,87,101)(60,74,88,102)(61,75,89,103)(62,76,90,104)(63,77,91,105)(64,78,92,106)(65,79,93,107)(66,80,94,108)(67,81,95,109)(68,82,96,110)(69,83,97,111)(70,84,98,112), (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,111)(8,112)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(57,82)(58,81)(59,80)(60,79)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(83,112)(84,111)(85,110)(86,109)(87,108)(88,107)(89,106)(90,105)(91,104)(92,103)(93,102)(94,101)(95,100)(96,99)(97,98) );

G=PermutationGroup([[(1,43,29,15),(2,44,30,16),(3,45,31,17),(4,46,32,18),(5,47,33,19),(6,48,34,20),(7,49,35,21),(8,50,36,22),(9,51,37,23),(10,52,38,24),(11,53,39,25),(12,54,40,26),(13,55,41,27),(14,56,42,28),(57,71,85,99),(58,72,86,100),(59,73,87,101),(60,74,88,102),(61,75,89,103),(62,76,90,104),(63,77,91,105),(64,78,92,106),(65,79,93,107),(66,80,94,108),(67,81,95,109),(68,82,96,110),(69,83,97,111),(70,84,98,112)], [(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,111),(8,112),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,97),(50,98),(51,99),(52,100),(53,101),(54,102),(55,103),(56,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,56),(2,55),(3,54),(4,53),(5,52),(6,51),(7,50),(8,49),(9,48),(10,47),(11,46),(12,45),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(57,82),(58,81),(59,80),(60,79),(61,78),(62,77),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70),(83,112),(84,111),(85,110),(86,109),(87,108),(88,107),(89,106),(90,105),(91,104),(92,103),(93,102),(94,101),(95,100),(96,99),(97,98)]])

76 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C8D8E8F8G14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order122222444777888888814141414···1428···2828···2856···5656···56
size112456562242222244456562224···42···24···42···24···4

76 irreducible representations

dim11111122222222222244
type+++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7C4○D4D14D14D14C7⋊D4D28D28C4○D28D4.4D4D4.4D28
kernelD4.4D28C56.C4C28.46D4C2×D56D4⋊D14C7×C8○D4C56C7×D4C7×Q8C8○D4C2×C14C2×C8M4(2)C4○D4C8D4Q8C22C7C1
# reps11212121132333126612212

Matrix representation of D4.4D28 in GL4(𝔽113) generated by

96700
4610400
0010446
00679
,
0010446
00679
96700
4610400
,
401200
1018400
004012
0010184
,
401200
87300
00886
0040105
G:=sub<GL(4,GF(113))| [9,46,0,0,67,104,0,0,0,0,104,67,0,0,46,9],[0,0,9,46,0,0,67,104,104,67,0,0,46,9,0,0],[40,101,0,0,12,84,0,0,0,0,40,101,0,0,12,84],[40,8,0,0,12,73,0,0,0,0,8,40,0,0,86,105] >;

D4.4D28 in GAP, Magma, Sage, TeX

D_4._4D_{28}
% in TeX

G:=Group("D4.4D28");
// GroupNames label

G:=SmallGroup(448,676);
// by ID

G=gap.SmallGroup(448,676);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,344,254,1123,297,136,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^28=a^2,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=a^2*c^27>;
// generators/relations

׿
×
𝔽