Copied to
clipboard

G = A4×C39order 468 = 22·32·13

Direct product of C39 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C39, (C2×C6)⋊C39, C22⋊(C3×C39), (C2×C78)⋊1C3, (C2×C26)⋊2C32, SmallGroup(468,48)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C39
C1C22C2×C26A4×C13 — A4×C39
C22 — A4×C39
C1C39

Generators and relations for A4×C39
 G = < a,b,c,d | a39=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

3C2
4C3
4C3
4C3
3C6
4C32
3C26
4C39
4C39
4C39
3C78
4C3×C39

Smallest permutation representation of A4×C39
On 156 points
Generators in S156
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 145)(2 146)(3 147)(4 148)(5 149)(6 150)(7 151)(8 152)(9 153)(10 154)(11 155)(12 156)(13 118)(14 119)(15 120)(16 121)(17 122)(18 123)(19 124)(20 125)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 141)(37 142)(38 143)(39 144)(40 102)(41 103)(42 104)(43 105)(44 106)(45 107)(46 108)(47 109)(48 110)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 79)(57 80)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 88)(66 89)(67 90)(68 91)(69 92)(70 93)(71 94)(72 95)(73 96)(74 97)(75 98)(76 99)(77 100)(78 101)
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 100)(8 101)(9 102)(10 103)(11 104)(12 105)(13 106)(14 107)(15 108)(16 109)(17 110)(18 111)(19 112)(20 113)(21 114)(22 115)(23 116)(24 117)(25 79)(26 80)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 153)(41 154)(42 155)(43 156)(44 118)(45 119)(46 120)(47 121)(48 122)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 129)(56 130)(57 131)(58 132)(59 133)(60 134)(61 135)(62 136)(63 137)(64 138)(65 139)(66 140)(67 141)(68 142)(69 143)(70 144)(71 145)(72 146)(73 147)(74 148)(75 149)(76 150)(77 151)(78 152)
(1 27 14)(2 28 15)(3 29 16)(4 30 17)(5 31 18)(6 32 19)(7 33 20)(8 34 21)(9 35 22)(10 36 23)(11 37 24)(12 38 25)(13 39 26)(40 140 115)(41 141 116)(42 142 117)(43 143 79)(44 144 80)(45 145 81)(46 146 82)(47 147 83)(48 148 84)(49 149 85)(50 150 86)(51 151 87)(52 152 88)(53 153 89)(54 154 90)(55 155 91)(56 156 92)(57 118 93)(58 119 94)(59 120 95)(60 121 96)(61 122 97)(62 123 98)(63 124 99)(64 125 100)(65 126 101)(66 127 102)(67 128 103)(68 129 104)(69 130 105)(70 131 106)(71 132 107)(72 133 108)(73 134 109)(74 135 110)(75 136 111)(76 137 112)(77 138 113)(78 139 114)

G:=sub<Sym(156)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,145)(2,146)(3,147)(4,148)(5,149)(6,150)(7,151)(8,152)(9,153)(10,154)(11,155)(12,156)(13,118)(14,119)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,102)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101), (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,153)(41,154)(42,155)(43,156)(44,118)(45,119)(46,120)(47,121)(48,122)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,131)(58,132)(59,133)(60,134)(61,135)(62,136)(63,137)(64,138)(65,139)(66,140)(67,141)(68,142)(69,143)(70,144)(71,145)(72,146)(73,147)(74,148)(75,149)(76,150)(77,151)(78,152), (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26)(40,140,115)(41,141,116)(42,142,117)(43,143,79)(44,144,80)(45,145,81)(46,146,82)(47,147,83)(48,148,84)(49,149,85)(50,150,86)(51,151,87)(52,152,88)(53,153,89)(54,154,90)(55,155,91)(56,156,92)(57,118,93)(58,119,94)(59,120,95)(60,121,96)(61,122,97)(62,123,98)(63,124,99)(64,125,100)(65,126,101)(66,127,102)(67,128,103)(68,129,104)(69,130,105)(70,131,106)(71,132,107)(72,133,108)(73,134,109)(74,135,110)(75,136,111)(76,137,112)(77,138,113)(78,139,114)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,145)(2,146)(3,147)(4,148)(5,149)(6,150)(7,151)(8,152)(9,153)(10,154)(11,155)(12,156)(13,118)(14,119)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,102)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101), (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,153)(41,154)(42,155)(43,156)(44,118)(45,119)(46,120)(47,121)(48,122)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,129)(56,130)(57,131)(58,132)(59,133)(60,134)(61,135)(62,136)(63,137)(64,138)(65,139)(66,140)(67,141)(68,142)(69,143)(70,144)(71,145)(72,146)(73,147)(74,148)(75,149)(76,150)(77,151)(78,152), (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26)(40,140,115)(41,141,116)(42,142,117)(43,143,79)(44,144,80)(45,145,81)(46,146,82)(47,147,83)(48,148,84)(49,149,85)(50,150,86)(51,151,87)(52,152,88)(53,153,89)(54,154,90)(55,155,91)(56,156,92)(57,118,93)(58,119,94)(59,120,95)(60,121,96)(61,122,97)(62,123,98)(63,124,99)(64,125,100)(65,126,101)(66,127,102)(67,128,103)(68,129,104)(69,130,105)(70,131,106)(71,132,107)(72,133,108)(73,134,109)(74,135,110)(75,136,111)(76,137,112)(77,138,113)(78,139,114) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,145),(2,146),(3,147),(4,148),(5,149),(6,150),(7,151),(8,152),(9,153),(10,154),(11,155),(12,156),(13,118),(14,119),(15,120),(16,121),(17,122),(18,123),(19,124),(20,125),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,141),(37,142),(38,143),(39,144),(40,102),(41,103),(42,104),(43,105),(44,106),(45,107),(46,108),(47,109),(48,110),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,79),(57,80),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,88),(66,89),(67,90),(68,91),(69,92),(70,93),(71,94),(72,95),(73,96),(74,97),(75,98),(76,99),(77,100),(78,101)], [(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,100),(8,101),(9,102),(10,103),(11,104),(12,105),(13,106),(14,107),(15,108),(16,109),(17,110),(18,111),(19,112),(20,113),(21,114),(22,115),(23,116),(24,117),(25,79),(26,80),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,153),(41,154),(42,155),(43,156),(44,118),(45,119),(46,120),(47,121),(48,122),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,129),(56,130),(57,131),(58,132),(59,133),(60,134),(61,135),(62,136),(63,137),(64,138),(65,139),(66,140),(67,141),(68,142),(69,143),(70,144),(71,145),(72,146),(73,147),(74,148),(75,149),(76,150),(77,151),(78,152)], [(1,27,14),(2,28,15),(3,29,16),(4,30,17),(5,31,18),(6,32,19),(7,33,20),(8,34,21),(9,35,22),(10,36,23),(11,37,24),(12,38,25),(13,39,26),(40,140,115),(41,141,116),(42,142,117),(43,143,79),(44,144,80),(45,145,81),(46,146,82),(47,147,83),(48,148,84),(49,149,85),(50,150,86),(51,151,87),(52,152,88),(53,153,89),(54,154,90),(55,155,91),(56,156,92),(57,118,93),(58,119,94),(59,120,95),(60,121,96),(61,122,97),(62,123,98),(63,124,99),(64,125,100),(65,126,101),(66,127,102),(67,128,103),(68,129,104),(69,130,105),(70,131,106),(71,132,107),(72,133,108),(73,134,109),(74,135,110),(75,136,111),(76,137,112),(77,138,113),(78,139,114)]])

156 conjugacy classes

class 1  2 3A3B3C···3H6A6B13A···13L26A···26L39A···39X39Y···39CR78A···78X
order12333···36613···1326···2639···3939···3978···78
size13114···4331···13···31···14···43···3

156 irreducible representations

dim1111113333
type++
imageC1C3C3C13C39C39A4C3×A4A4×C13A4×C39
kernelA4×C39A4×C13C2×C78C3×A4A4C2×C6C39C13C3C1
# reps162127224121224

Matrix representation of A4×C39 in GL4(𝔽79) generated by

23000
03800
00380
00038
,
1000
0010
0100
0787878
,
1000
0787878
0001
0010
,
23000
0100
0001
0787878
G:=sub<GL(4,GF(79))| [23,0,0,0,0,38,0,0,0,0,38,0,0,0,0,38],[1,0,0,0,0,0,1,78,0,1,0,78,0,0,0,78],[1,0,0,0,0,78,0,0,0,78,0,1,0,78,1,0],[23,0,0,0,0,1,0,78,0,0,0,78,0,0,1,78] >;

A4×C39 in GAP, Magma, Sage, TeX

A_4\times C_{39}
% in TeX

G:=Group("A4xC39");
// GroupNames label

G:=SmallGroup(468,48);
// by ID

G=gap.SmallGroup(468,48);
# by ID

G:=PCGroup([5,-3,-3,-13,-2,2,4683,8779]);
// Polycyclic

G:=Group<a,b,c,d|a^39=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of A4×C39 in TeX

׿
×
𝔽