Home IrrRep Linear Cn Dn Sn An ...
About degree Characters × .

Extensions 1→N→G→Q→1 with N=C15 and Q=2+ (1+4)

Direct product G=N×Q with N=C15 and Q=2+ (1+4)
dρLabelID
C15×2+ (1+4)1204C15xES+(2,2)480,1184

Semidirect products G=N:Q with N=C15 and Q=2+ (1+4)
extensionφ:Q→Aut NdρLabelID
C1512+ (1+4) = D2025D6φ: 2+ (1+4)/C2×C4C22 ⊆ Aut C151204C15:1ES+(2,2)480,1093
C1522+ (1+4) = D2026D6φ: 2+ (1+4)/C2×C4C22 ⊆ Aut C151204C15:2ES+(2,2)480,1094
C1532+ (1+4) = D2029D6φ: 2+ (1+4)/C2×C4C22 ⊆ Aut C151204+C15:3ES+(2,2)480,1095
C1542+ (1+4) = D2013D6φ: 2+ (1+4)/D4C22 ⊆ Aut C151208-C15:4ES+(2,2)480,1101
C1552+ (1+4) = D2014D6φ: 2+ (1+4)/D4C22 ⊆ Aut C151208+C15:5ES+(2,2)480,1102
C1562+ (1+4) = D1214D10φ: 2+ (1+4)/D4C22 ⊆ Aut C151208+C15:6ES+(2,2)480,1103
C1572+ (1+4) = D2017D6φ: 2+ (1+4)/Q8C22 ⊆ Aut C151208+C15:7ES+(2,2)480,1111
C1582+ (1+4) = C15⋊2+ (1+4)φ: 2+ (1+4)/C23C22 ⊆ Aut C151204C15:8ES+(2,2)480,1125
C1592+ (1+4) = D46D30φ: 2+ (1+4)/C2×D4C2 ⊆ Aut C151204C15:9ES+(2,2)480,1171
C15102+ (1+4) = C3×D46D10φ: 2+ (1+4)/C2×D4C2 ⊆ Aut C151204C15:10ES+(2,2)480,1141
C15112+ (1+4) = C5×D46D6φ: 2+ (1+4)/C2×D4C2 ⊆ Aut C151204C15:11ES+(2,2)480,1156
C15122+ (1+4) = D48D30φ: 2+ (1+4)/C4○D4C2 ⊆ Aut C151204+C15:12ES+(2,2)480,1176
C15132+ (1+4) = C3×D48D10φ: 2+ (1+4)/C4○D4C2 ⊆ Aut C151204C15:13ES+(2,2)480,1146
C15142+ (1+4) = C5×D4○D12φ: 2+ (1+4)/C4○D4C2 ⊆ Aut C151204C15:14ES+(2,2)480,1161


׿
×
𝔽