Copied to
clipboard

?

G = C5×D4○D12order 480 = 25·3·5

Direct product of C5 and D4○D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×D4○D12, C30.95C24, C60.242C23, C15142+ (1+4), (C5×D4)⋊30D6, (S3×D4)⋊5C10, D48(S3×C10), (C2×C20)⋊23D6, (C5×Q8)⋊29D6, Q88(S3×C10), C4○D128C10, (C2×D12)⋊13C10, D1211(C2×C10), (C10×D12)⋊29C2, (C2×C60)⋊30C22, Q83S35C10, (S3×C20)⋊15C22, Dic612(C2×C10), C32(C5×2+ (1+4)), (D4×C15)⋊40C22, (C5×D12)⋊41C22, C6.12(C23×C10), C10.80(S3×C23), (Q8×C15)⋊35C22, D6.6(C22×C10), (S3×C10).42C23, C12.26(C22×C10), (C2×C30).260C23, C20.239(C22×S3), (C5×Dic6)⋊39C22, (C5×Dic3).44C23, Dic3.8(C22×C10), (C5×S3×D4)⋊12C2, (C2×C4)⋊4(S3×C10), C4○D45(C5×S3), C4.26(S3×C2×C10), (C4×S3)⋊2(C2×C10), (C2×C12)⋊5(C2×C10), (C5×C4○D4)⋊12S3, (C3×C4○D4)⋊4C10, (C3×D4)⋊9(C2×C10), C3⋊D45(C2×C10), (C3×Q8)⋊8(C2×C10), C22.4(S3×C2×C10), (C5×C4○D12)⋊18C2, (C15×C4○D4)⋊14C2, (S3×C2×C10)⋊16C22, C2.13(S3×C22×C10), (C22×S3)⋊4(C2×C10), (C5×Q83S3)⋊12C2, (C5×C3⋊D4)⋊21C22, (C2×C6).4(C22×C10), (C2×C10).23(C22×S3), SmallGroup(480,1161)

Series: Derived Chief Lower central Upper central

C1C6 — C5×D4○D12
C1C3C6C30S3×C10S3×C2×C10C5×S3×D4 — C5×D4○D12
C3C6 — C5×D4○D12

Subgroups: 788 in 332 conjugacy classes, 170 normal (24 characteristic)
C1, C2, C2 [×9], C3, C4, C4 [×3], C4 [×2], C22 [×3], C22 [×12], C5, S3 [×6], C6, C6 [×3], C2×C4 [×3], C2×C4 [×6], D4 [×3], D4 [×15], Q8, Q8, C23 [×6], C10, C10 [×9], Dic3 [×2], C12, C12 [×3], D6 [×6], D6 [×6], C2×C6 [×3], C15, C2×D4 [×9], C4○D4, C4○D4 [×5], C20, C20 [×3], C20 [×2], C2×C10 [×3], C2×C10 [×12], Dic6, C4×S3 [×6], D12 [×9], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C3×Q8, C22×S3 [×6], C5×S3 [×6], C30, C30 [×3], 2+ (1+4), C2×C20 [×3], C2×C20 [×6], C5×D4 [×3], C5×D4 [×15], C5×Q8, C5×Q8, C22×C10 [×6], C2×D12 [×3], C4○D12 [×3], S3×D4 [×6], Q83S3 [×2], C3×C4○D4, C5×Dic3 [×2], C60, C60 [×3], S3×C10 [×6], S3×C10 [×6], C2×C30 [×3], D4×C10 [×9], C5×C4○D4, C5×C4○D4 [×5], D4○D12, C5×Dic6, S3×C20 [×6], C5×D12 [×9], C5×C3⋊D4 [×6], C2×C60 [×3], D4×C15 [×3], Q8×C15, S3×C2×C10 [×6], C5×2+ (1+4), C10×D12 [×3], C5×C4○D12 [×3], C5×S3×D4 [×6], C5×Q83S3 [×2], C15×C4○D4, C5×D4○D12

Quotients:
C1, C2 [×15], C22 [×35], C5, S3, C23 [×15], C10 [×15], D6 [×7], C24, C2×C10 [×35], C22×S3 [×7], C5×S3, 2+ (1+4), C22×C10 [×15], S3×C23, S3×C10 [×7], C23×C10, D4○D12, S3×C2×C10 [×7], C5×2+ (1+4), S3×C22×C10, C5×D4○D12

Generators and relations
 G = < a,b,c,d,e | a5=b4=c2=e2=1, d6=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d5 >

Smallest permutation representation
On 120 points
Generators in S120
(1 14 103 36 39)(2 15 104 25 40)(3 16 105 26 41)(4 17 106 27 42)(5 18 107 28 43)(6 19 108 29 44)(7 20 97 30 45)(8 21 98 31 46)(9 22 99 32 47)(10 23 100 33 48)(11 24 101 34 37)(12 13 102 35 38)(49 69 76 109 92)(50 70 77 110 93)(51 71 78 111 94)(52 72 79 112 95)(53 61 80 113 96)(54 62 81 114 85)(55 63 82 115 86)(56 64 83 116 87)(57 65 84 117 88)(58 66 73 118 89)(59 67 74 119 90)(60 68 75 120 91)
(1 56 7 50)(2 57 8 51)(3 58 9 52)(4 59 10 53)(5 60 11 54)(6 49 12 55)(13 63 19 69)(14 64 20 70)(15 65 21 71)(16 66 22 72)(17 67 23 61)(18 68 24 62)(25 117 31 111)(26 118 32 112)(27 119 33 113)(28 120 34 114)(29 109 35 115)(30 110 36 116)(37 85 43 91)(38 86 44 92)(39 87 45 93)(40 88 46 94)(41 89 47 95)(42 90 48 96)(73 99 79 105)(74 100 80 106)(75 101 81 107)(76 102 82 108)(77 103 83 97)(78 104 84 98)
(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)(73 79)(74 80)(75 81)(76 82)(77 83)(78 84)(85 91)(86 92)(87 93)(88 94)(89 95)(90 96)(109 115)(110 116)(111 117)(112 118)(113 119)(114 120)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 14)(15 24)(16 23)(17 22)(18 21)(19 20)(25 34)(26 33)(27 32)(28 31)(29 30)(35 36)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 50)(51 60)(52 59)(53 58)(54 57)(55 56)(61 66)(62 65)(63 64)(67 72)(68 71)(69 70)(73 80)(74 79)(75 78)(76 77)(81 84)(82 83)(85 88)(86 87)(89 96)(90 95)(91 94)(92 93)(97 108)(98 107)(99 106)(100 105)(101 104)(102 103)(109 110)(111 120)(112 119)(113 118)(114 117)(115 116)

G:=sub<Sym(120)| (1,14,103,36,39)(2,15,104,25,40)(3,16,105,26,41)(4,17,106,27,42)(5,18,107,28,43)(6,19,108,29,44)(7,20,97,30,45)(8,21,98,31,46)(9,22,99,32,47)(10,23,100,33,48)(11,24,101,34,37)(12,13,102,35,38)(49,69,76,109,92)(50,70,77,110,93)(51,71,78,111,94)(52,72,79,112,95)(53,61,80,113,96)(54,62,81,114,85)(55,63,82,115,86)(56,64,83,116,87)(57,65,84,117,88)(58,66,73,118,89)(59,67,74,119,90)(60,68,75,120,91), (1,56,7,50)(2,57,8,51)(3,58,9,52)(4,59,10,53)(5,60,11,54)(6,49,12,55)(13,63,19,69)(14,64,20,70)(15,65,21,71)(16,66,22,72)(17,67,23,61)(18,68,24,62)(25,117,31,111)(26,118,32,112)(27,119,33,113)(28,120,34,114)(29,109,35,115)(30,110,36,116)(37,85,43,91)(38,86,44,92)(39,87,45,93)(40,88,46,94)(41,89,47,95)(42,90,48,96)(73,99,79,105)(74,100,80,106)(75,101,81,107)(76,102,82,108)(77,103,83,97)(78,104,84,98), (49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,34)(26,33)(27,32)(28,31)(29,30)(35,36)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,50)(51,60)(52,59)(53,58)(54,57)(55,56)(61,66)(62,65)(63,64)(67,72)(68,71)(69,70)(73,80)(74,79)(75,78)(76,77)(81,84)(82,83)(85,88)(86,87)(89,96)(90,95)(91,94)(92,93)(97,108)(98,107)(99,106)(100,105)(101,104)(102,103)(109,110)(111,120)(112,119)(113,118)(114,117)(115,116)>;

G:=Group( (1,14,103,36,39)(2,15,104,25,40)(3,16,105,26,41)(4,17,106,27,42)(5,18,107,28,43)(6,19,108,29,44)(7,20,97,30,45)(8,21,98,31,46)(9,22,99,32,47)(10,23,100,33,48)(11,24,101,34,37)(12,13,102,35,38)(49,69,76,109,92)(50,70,77,110,93)(51,71,78,111,94)(52,72,79,112,95)(53,61,80,113,96)(54,62,81,114,85)(55,63,82,115,86)(56,64,83,116,87)(57,65,84,117,88)(58,66,73,118,89)(59,67,74,119,90)(60,68,75,120,91), (1,56,7,50)(2,57,8,51)(3,58,9,52)(4,59,10,53)(5,60,11,54)(6,49,12,55)(13,63,19,69)(14,64,20,70)(15,65,21,71)(16,66,22,72)(17,67,23,61)(18,68,24,62)(25,117,31,111)(26,118,32,112)(27,119,33,113)(28,120,34,114)(29,109,35,115)(30,110,36,116)(37,85,43,91)(38,86,44,92)(39,87,45,93)(40,88,46,94)(41,89,47,95)(42,90,48,96)(73,99,79,105)(74,100,80,106)(75,101,81,107)(76,102,82,108)(77,103,83,97)(78,104,84,98), (49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,34)(26,33)(27,32)(28,31)(29,30)(35,36)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,50)(51,60)(52,59)(53,58)(54,57)(55,56)(61,66)(62,65)(63,64)(67,72)(68,71)(69,70)(73,80)(74,79)(75,78)(76,77)(81,84)(82,83)(85,88)(86,87)(89,96)(90,95)(91,94)(92,93)(97,108)(98,107)(99,106)(100,105)(101,104)(102,103)(109,110)(111,120)(112,119)(113,118)(114,117)(115,116) );

G=PermutationGroup([(1,14,103,36,39),(2,15,104,25,40),(3,16,105,26,41),(4,17,106,27,42),(5,18,107,28,43),(6,19,108,29,44),(7,20,97,30,45),(8,21,98,31,46),(9,22,99,32,47),(10,23,100,33,48),(11,24,101,34,37),(12,13,102,35,38),(49,69,76,109,92),(50,70,77,110,93),(51,71,78,111,94),(52,72,79,112,95),(53,61,80,113,96),(54,62,81,114,85),(55,63,82,115,86),(56,64,83,116,87),(57,65,84,117,88),(58,66,73,118,89),(59,67,74,119,90),(60,68,75,120,91)], [(1,56,7,50),(2,57,8,51),(3,58,9,52),(4,59,10,53),(5,60,11,54),(6,49,12,55),(13,63,19,69),(14,64,20,70),(15,65,21,71),(16,66,22,72),(17,67,23,61),(18,68,24,62),(25,117,31,111),(26,118,32,112),(27,119,33,113),(28,120,34,114),(29,109,35,115),(30,110,36,116),(37,85,43,91),(38,86,44,92),(39,87,45,93),(40,88,46,94),(41,89,47,95),(42,90,48,96),(73,99,79,105),(74,100,80,106),(75,101,81,107),(76,102,82,108),(77,103,83,97),(78,104,84,98)], [(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72),(73,79),(74,80),(75,81),(76,82),(77,83),(78,84),(85,91),(86,92),(87,93),(88,94),(89,95),(90,96),(109,115),(110,116),(111,117),(112,118),(113,119),(114,120)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14),(15,24),(16,23),(17,22),(18,21),(19,20),(25,34),(26,33),(27,32),(28,31),(29,30),(35,36),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,50),(51,60),(52,59),(53,58),(54,57),(55,56),(61,66),(62,65),(63,64),(67,72),(68,71),(69,70),(73,80),(74,79),(75,78),(76,77),(81,84),(82,83),(85,88),(86,87),(89,96),(90,95),(91,94),(92,93),(97,108),(98,107),(99,106),(100,105),(101,104),(102,103),(109,110),(111,120),(112,119),(113,118),(114,117),(115,116)])

Matrix representation G ⊆ GL4(𝔽61) generated by

34000
03400
00340
00034
,
1020
0102
600600
060060
,
1000
0100
600600
060060
,
462300
382300
004623
003823
,
462300
381500
004623
003815
G:=sub<GL(4,GF(61))| [34,0,0,0,0,34,0,0,0,0,34,0,0,0,0,34],[1,0,60,0,0,1,0,60,2,0,60,0,0,2,0,60],[1,0,60,0,0,1,0,60,0,0,60,0,0,0,0,60],[46,38,0,0,23,23,0,0,0,0,46,38,0,0,23,23],[46,38,0,0,23,15,0,0,0,0,46,38,0,0,23,15] >;

135 conjugacy classes

class 1 2A2B2C2D2E···2J 3 4A4B4C4D4E4F5A5B5C5D6A6B6C6D10A10B10C10D10E···10P10Q···10AN12A12B12C12D12E15A15B15C15D20A···20P20Q···20X30A30B30C30D30E···30P60A···60H60I···60T
order122222···23444444555566661010101010···1010···1012121212121515151520···2020···203030303030···3060···6060···60
size112226···622222661111244411112···26···62244422222···26···622224···42···24···4

135 irreducible representations

dim111111111111222222224444
type++++++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10S3D6D6D6C5×S3S3×C10S3×C10S3×C102+ (1+4)D4○D12C5×2+ (1+4)C5×D4○D12
kernelC5×D4○D12C10×D12C5×C4○D12C5×S3×D4C5×Q83S3C15×C4○D4D4○D12C2×D12C4○D12S3×D4Q83S3C3×C4○D4C5×C4○D4C2×C20C5×D4C5×Q8C4○D4C2×C4D4Q8C15C5C3C1
# reps13362141212248413314121241248

In GAP, Magma, Sage, TeX

C_5\times D_4\circ D_{12}
% in TeX

G:=Group("C5xD4oD12");
// GroupNames label

G:=SmallGroup(480,1161);
// by ID

G=gap.SmallGroup(480,1161);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-3,891,2467,304,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=e^2=1,d^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d^5>;
// generators/relations

׿
×
𝔽