Copied to
clipboard

?

G = D2017D6order 480 = 25·3·5

11st semidirect product of D20 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2017D6, D1217D10, D6013C22, C30.39C24, C60.63C23, C1572+ (1+4), D30.20C23, Dic15.42C23, (C4×D5)⋊6D6, (C4×S3)⋊6D10, (D5×D12)⋊7C2, (S3×D20)⋊7C2, C54(D4○D12), (C5×Q8)⋊16D6, Q811(S3×D5), C20⋊D67C2, Q82D58S3, Q83S35D5, (C3×Q8)⋊13D10, C15⋊Q819C22, Q83D157C2, C34(D48D10), (S3×C20)⋊9C22, (C4×D15)⋊9C22, (D5×C12)⋊9C22, C6.39(C23×D5), D6.D108C2, (C5×D12)⋊13C22, (C3×D20)⋊13C22, C5⋊D1217C22, C3⋊D2016C22, C15⋊D417C22, C20.63(C22×S3), C10.39(S3×C23), (Q8×C15)⋊11C22, (C6×D5).17C23, D6.18(C22×D5), C12.63(C22×D5), (S3×C10).20C23, D10.20(C22×S3), (C3×Dic5).50C23, (C5×Dic3).34C23, Dic3.29(C22×D5), Dic5.45(C22×S3), C4.63(C2×S3×D5), (C2×S3×D5)⋊7C22, C2.42(C22×S3×D5), (C5×Q83S3)⋊7C2, (C3×Q82D5)⋊7C2, SmallGroup(480,1111)

Series: Derived Chief Lower central Upper central

C1C30 — D2017D6
C1C5C15C30C6×D5C2×S3×D5D5×D12 — D2017D6
C15C30 — D2017D6

Subgroups: 2044 in 332 conjugacy classes, 108 normal (24 characteristic)
C1, C2, C2 [×9], C3, C4 [×3], C4 [×3], C22 [×15], C5, S3 [×6], C6, C6 [×3], C2×C4 [×9], D4 [×18], Q8, Q8, C23 [×6], D5 [×6], C10, C10 [×3], Dic3, Dic3, C12 [×3], C12, D6 [×3], D6 [×9], C2×C6 [×3], C15, C2×D4 [×9], C4○D4 [×6], Dic5, Dic5, C20 [×3], C20, D10 [×3], D10 [×9], C2×C10 [×3], Dic6, C4×S3 [×3], C4×S3 [×3], D12 [×3], D12 [×6], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C3×Q8, C22×S3 [×6], C5×S3 [×3], C3×D5 [×3], D15 [×3], C30, 2+ (1+4), Dic10, C4×D5 [×3], C4×D5 [×3], D20 [×3], D20 [×6], C5⋊D4 [×6], C2×C20 [×3], C5×D4 [×3], C5×Q8, C22×D5 [×6], C2×D12 [×3], C4○D12 [×3], S3×D4 [×6], Q83S3, Q83S3, C3×C4○D4, C5×Dic3, C3×Dic5, Dic15, C60 [×3], S3×D5 [×6], C6×D5 [×3], S3×C10 [×3], D30 [×3], C2×D20 [×3], C4○D20 [×3], D4×D5 [×6], Q82D5, Q82D5, C5×C4○D4, D4○D12, C15⋊D4 [×3], C3⋊D20 [×3], C5⋊D12 [×3], C15⋊Q8, D5×C12 [×3], C3×D20 [×3], S3×C20 [×3], C5×D12 [×3], C4×D15 [×3], D60 [×3], Q8×C15, C2×S3×D5 [×6], D48D10, D6.D10 [×3], D5×D12 [×3], S3×D20 [×3], C20⋊D6 [×3], C3×Q82D5, C5×Q83S3, Q83D15, D2017D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C24, D10 [×7], C22×S3 [×7], 2+ (1+4), C22×D5 [×7], S3×C23, S3×D5, C23×D5, D4○D12, C2×S3×D5 [×3], D48D10, C22×S3×D5, D2017D6

Generators and relations
 G = < a,b,c,d | a20=b2=c6=d2=1, bab=dad=a-1, cac-1=a9, cbc-1=a18b, dbd=a8b, dcd=c-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(81 94)(82 93)(83 92)(84 91)(85 90)(86 89)(87 88)(95 100)(96 99)(97 98)(101 120)(102 119)(103 118)(104 117)(105 116)(106 115)(107 114)(108 113)(109 112)(110 111)
(1 106 98 34 71 56)(2 115 99 23 72 45)(3 104 100 32 73 54)(4 113 81 21 74 43)(5 102 82 30 75 52)(6 111 83 39 76 41)(7 120 84 28 77 50)(8 109 85 37 78 59)(9 118 86 26 79 48)(10 107 87 35 80 57)(11 116 88 24 61 46)(12 105 89 33 62 55)(13 114 90 22 63 44)(14 103 91 31 64 53)(15 112 92 40 65 42)(16 101 93 29 66 51)(17 110 94 38 67 60)(18 119 95 27 68 49)(19 108 96 36 69 58)(20 117 97 25 70 47)
(1 93)(2 92)(3 91)(4 90)(5 89)(6 88)(7 87)(8 86)(9 85)(10 84)(11 83)(12 82)(13 81)(14 100)(15 99)(16 98)(17 97)(18 96)(19 95)(20 94)(21 44)(22 43)(23 42)(24 41)(25 60)(26 59)(27 58)(28 57)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 70)(68 69)(77 80)(78 79)(101 106)(102 105)(103 104)(107 120)(108 119)(109 118)(110 117)(111 116)(112 115)(113 114)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(95,100)(96,99)(97,98)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111), (1,106,98,34,71,56)(2,115,99,23,72,45)(3,104,100,32,73,54)(4,113,81,21,74,43)(5,102,82,30,75,52)(6,111,83,39,76,41)(7,120,84,28,77,50)(8,109,85,37,78,59)(9,118,86,26,79,48)(10,107,87,35,80,57)(11,116,88,24,61,46)(12,105,89,33,62,55)(13,114,90,22,63,44)(14,103,91,31,64,53)(15,112,92,40,65,42)(16,101,93,29,66,51)(17,110,94,38,67,60)(18,119,95,27,68,49)(19,108,96,36,69,58)(20,117,97,25,70,47), (1,93)(2,92)(3,91)(4,90)(5,89)(6,88)(7,87)(8,86)(9,85)(10,84)(11,83)(12,82)(13,81)(14,100)(15,99)(16,98)(17,97)(18,96)(19,95)(20,94)(21,44)(22,43)(23,42)(24,41)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79)(101,106)(102,105)(103,104)(107,120)(108,119)(109,118)(110,117)(111,116)(112,115)(113,114)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(95,100)(96,99)(97,98)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111), (1,106,98,34,71,56)(2,115,99,23,72,45)(3,104,100,32,73,54)(4,113,81,21,74,43)(5,102,82,30,75,52)(6,111,83,39,76,41)(7,120,84,28,77,50)(8,109,85,37,78,59)(9,118,86,26,79,48)(10,107,87,35,80,57)(11,116,88,24,61,46)(12,105,89,33,62,55)(13,114,90,22,63,44)(14,103,91,31,64,53)(15,112,92,40,65,42)(16,101,93,29,66,51)(17,110,94,38,67,60)(18,119,95,27,68,49)(19,108,96,36,69,58)(20,117,97,25,70,47), (1,93)(2,92)(3,91)(4,90)(5,89)(6,88)(7,87)(8,86)(9,85)(10,84)(11,83)(12,82)(13,81)(14,100)(15,99)(16,98)(17,97)(18,96)(19,95)(20,94)(21,44)(22,43)(23,42)(24,41)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79)(101,106)(102,105)(103,104)(107,120)(108,119)(109,118)(110,117)(111,116)(112,115)(113,114) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(81,94),(82,93),(83,92),(84,91),(85,90),(86,89),(87,88),(95,100),(96,99),(97,98),(101,120),(102,119),(103,118),(104,117),(105,116),(106,115),(107,114),(108,113),(109,112),(110,111)], [(1,106,98,34,71,56),(2,115,99,23,72,45),(3,104,100,32,73,54),(4,113,81,21,74,43),(5,102,82,30,75,52),(6,111,83,39,76,41),(7,120,84,28,77,50),(8,109,85,37,78,59),(9,118,86,26,79,48),(10,107,87,35,80,57),(11,116,88,24,61,46),(12,105,89,33,62,55),(13,114,90,22,63,44),(14,103,91,31,64,53),(15,112,92,40,65,42),(16,101,93,29,66,51),(17,110,94,38,67,60),(18,119,95,27,68,49),(19,108,96,36,69,58),(20,117,97,25,70,47)], [(1,93),(2,92),(3,91),(4,90),(5,89),(6,88),(7,87),(8,86),(9,85),(10,84),(11,83),(12,82),(13,81),(14,100),(15,99),(16,98),(17,97),(18,96),(19,95),(20,94),(21,44),(22,43),(23,42),(24,41),(25,60),(26,59),(27,58),(28,57),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,70),(68,69),(77,80),(78,79),(101,106),(102,105),(103,104),(107,120),(108,119),(109,118),(110,117),(111,116),(112,115),(113,114)])

Matrix representation G ⊆ GL8(𝔽61)

181000000
4260000000
00010000
0060170000
000043600
0000252700
00004365725
000025273634
,
6060000000
01000000
00010000
00100000
000043600
0000255700
000000436
0000002557
,
252746260000
383641350000
21216000000
12524410000
000060020
00001812559
00000010
0000004360
,
363415350000
232520260000
4040200000
49934590000
0000255700
0000343600
00002557364
000034362725

G:=sub<GL(8,GF(61))| [18,42,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,1,17,0,0,0,0,0,0,0,0,4,25,4,25,0,0,0,0,36,27,36,27,0,0,0,0,0,0,57,36,0,0,0,0,0,0,25,34],[60,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,25,0,0,0,0,0,0,36,57,0,0,0,0,0,0,0,0,4,25,0,0,0,0,0,0,36,57],[25,38,21,12,0,0,0,0,27,36,21,52,0,0,0,0,46,41,60,44,0,0,0,0,26,35,0,1,0,0,0,0,0,0,0,0,60,18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,25,1,43,0,0,0,0,0,59,0,60],[36,23,40,49,0,0,0,0,34,25,40,9,0,0,0,0,15,20,2,34,0,0,0,0,35,26,0,59,0,0,0,0,0,0,0,0,25,34,25,34,0,0,0,0,57,36,57,36,0,0,0,0,0,0,36,27,0,0,0,0,0,0,4,25] >;

57 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C4D4E4F5A5B6A6B6C6D10A10B10C···10H12A12B12C12D12E15A15B20A···20F20G20H20I20J30A30B60A···60F
order122222222223444444556666101010···101212121212151520···2020202020303060···60
size116661010103030302222610302222020202212···124441010444···46666448···8

57 irreducible representations

dim1111111122222222444448
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D5D6D6D6D10D10D102+ (1+4)S3×D5D4○D12C2×S3×D5D48D10D2017D6
kernelD2017D6D6.D10D5×D12S3×D20C20⋊D6C3×Q82D5C5×Q83S3Q83D15Q82D5Q83S3C4×D5D20C5×Q8C4×S3D12C3×Q8C15Q8C5C4C3C1
# reps1333311112331662122642

In GAP, Magma, Sage, TeX

D_{20}\rtimes_{17}D_6
% in TeX

G:=Group("D20:17D6");
// GroupNames label

G:=SmallGroup(480,1111);
// by ID

G=gap.SmallGroup(480,1111);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,100,675,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^6=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^18*b,d*b*d=a^8*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽