Copied to
clipboard

?

G = D2014D6order 480 = 25·3·5

8th semidirect product of D20 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2014D6, D609C22, Dic613D10, C60.54C23, C30.30C24, C1552+ (1+4), D30.15C23, Dic15.17C23, (C4×D5)⋊4D6, (D4×D5)⋊5S3, C5⋊D46D6, (S3×D20)⋊5C2, (C5×D4)⋊14D6, (C4×S3)⋊4D10, (D4×D15)⋊6C2, D411(S3×D5), C3⋊D46D10, (C3×D4)⋊14D10, D42S35D5, C53(D46D6), (C22×D5)⋊7D6, C15⋊Q813C22, D20⋊S35C2, C12.28D105C2, D10⋊D64C2, C33(D48D10), (S3×C20)⋊5C22, (C2×Dic3)⋊8D10, (D5×C12)⋊5C22, (C4×D15)⋊5C22, C157D46C22, (C2×C30).6C23, C6.30(C23×D5), Dic5.D65C2, D6.D103C2, (D4×C15)⋊12C22, (C3×D20)⋊10C22, C15⋊D415C22, C3⋊D2021C22, C5⋊D1215C22, C10.30(S3×C23), C20.54(C22×S3), D30.C22C22, (C5×Dic6)⋊9C22, (D5×Dic3)⋊3C22, D6.14(C22×D5), (C6×D5).46C23, C12.54(C22×D5), (S3×C10).15C23, D10.15(C22×S3), (C10×Dic3)⋊14C22, (C22×D15)⋊12C22, (C5×Dic3).30C23, (C3×Dic5).15C23, Dic5.16(C22×S3), Dic3.27(C22×D5), (C3×D4×D5)⋊7C2, C4.54(C2×S3×D5), (D5×C3⋊D4)⋊5C2, (D5×C2×C6)⋊9C22, (C2×S3×D5)⋊5C22, C22.6(C2×S3×D5), (C5×D42S3)⋊7C2, (C2×C3⋊D20)⋊20C2, C2.33(C22×S3×D5), (C3×C5⋊D4)⋊6C22, (C5×C3⋊D4)⋊6C22, (C2×C6).6(C22×D5), (C2×C10).6(C22×S3), SmallGroup(480,1102)

Series: Derived Chief Lower central Upper central

C1C30 — D2014D6
C1C5C15C30C6×D5C2×S3×D5D5×C3⋊D4 — D2014D6
C15C30 — D2014D6

Subgroups: 1932 in 332 conjugacy classes, 108 normal (50 characteristic)
C1, C2, C2 [×9], C3, C4, C4 [×5], C22 [×2], C22 [×13], C5, S3 [×4], C6, C6 [×5], C2×C4 [×9], D4, D4 [×17], Q8 [×2], C23 [×6], D5 [×6], C10, C10 [×3], Dic3, Dic3 [×2], Dic3, C12, C12, D6, D6 [×7], C2×C6 [×2], C2×C6 [×5], C15, C2×D4 [×9], C4○D4 [×6], Dic5, Dic5, C20, C20 [×3], D10, D10 [×2], D10 [×9], C2×C10 [×2], C2×C10, Dic6, Dic6, C4×S3, C4×S3 [×3], D12 [×2], C2×Dic3 [×2], C2×Dic3 [×2], C3⋊D4 [×2], C3⋊D4 [×10], C2×C12, C3×D4, C3×D4 [×3], C22×S3 [×4], C22×C6 [×2], C5×S3, C3×D5 [×3], D15 [×3], C30, C30 [×2], 2+ (1+4), Dic10, C4×D5, C4×D5 [×5], D20, D20 [×8], C5⋊D4 [×2], C5⋊D4 [×4], C2×C20 [×3], C5×D4, C5×D4 [×2], C5×Q8, C22×D5 [×2], C22×D5 [×4], C4○D12 [×2], S3×D4 [×4], D42S3, D42S3 [×3], C2×C3⋊D4 [×4], C6×D4, C5×Dic3, C5×Dic3 [×2], C3×Dic5, Dic15, C60, S3×D5 [×2], C6×D5, C6×D5 [×2], C6×D5 [×2], S3×C10, D30, D30 [×2], D30 [×2], C2×C30 [×2], C2×D20 [×3], C4○D20 [×3], D4×D5, D4×D5 [×5], Q82D5 [×2], C5×C4○D4, D46D6, D5×Dic3 [×2], D30.C2 [×2], C15⋊D4, C3⋊D20, C3⋊D20 [×6], C5⋊D12, C15⋊Q8, D5×C12, C3×D20, C3×C5⋊D4 [×2], C5×Dic6, S3×C20, C10×Dic3 [×2], C5×C3⋊D4 [×2], C4×D15, D60, C157D4 [×2], D4×C15, C2×S3×D5 [×2], D5×C2×C6 [×2], C22×D15 [×2], D48D10, D20⋊S3, D6.D10, C12.28D10, S3×D20, Dic5.D6 [×2], C2×C3⋊D20 [×2], D5×C3⋊D4 [×2], D10⋊D6 [×2], C3×D4×D5, C5×D42S3, D4×D15, D2014D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C24, D10 [×7], C22×S3 [×7], 2+ (1+4), C22×D5 [×7], S3×C23, S3×D5, C23×D5, D46D6, C2×S3×D5 [×3], D48D10, C22×S3×D5, D2014D6

Generators and relations
 G = < a,b,c,d | a20=b2=c6=d2=1, bab=a-1, cac-1=a11, dad=a9, cbc-1=a10b, dbd=a18b, dcd=c-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 26)(22 25)(23 24)(27 40)(28 39)(29 38)(30 37)(31 36)(32 35)(33 34)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(61 70)(62 69)(63 68)(64 67)(65 66)(71 80)(72 79)(73 78)(74 77)(75 76)(81 96)(82 95)(83 94)(84 93)(85 92)(86 91)(87 90)(88 89)(97 100)(98 99)(101 104)(102 103)(105 120)(106 119)(107 118)(108 117)(109 116)(110 115)(111 114)(112 113)
(1 34 99)(2 25 100 12 35 90)(3 36 81)(4 27 82 14 37 92)(5 38 83)(6 29 84 16 39 94)(7 40 85)(8 31 86 18 21 96)(9 22 87)(10 33 88 20 23 98)(11 24 89)(13 26 91)(15 28 93)(17 30 95)(19 32 97)(41 76 113 51 66 103)(42 67 114)(43 78 115 53 68 105)(44 69 116)(45 80 117 55 70 107)(46 71 118)(47 62 119 57 72 109)(48 73 120)(49 64 101 59 74 111)(50 75 102)(52 77 104)(54 79 106)(56 61 108)(58 63 110)(60 65 112)
(1 61)(2 70)(3 79)(4 68)(5 77)(6 66)(7 75)(8 64)(9 73)(10 62)(11 71)(12 80)(13 69)(14 78)(15 67)(16 76)(17 65)(18 74)(19 63)(20 72)(21 59)(22 48)(23 57)(24 46)(25 55)(26 44)(27 53)(28 42)(29 51)(30 60)(31 49)(32 58)(33 47)(34 56)(35 45)(36 54)(37 43)(38 52)(39 41)(40 50)(81 106)(82 115)(83 104)(84 113)(85 102)(86 111)(87 120)(88 109)(89 118)(90 107)(91 116)(92 105)(93 114)(94 103)(95 112)(96 101)(97 110)(98 119)(99 108)(100 117)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,26)(22,25)(23,24)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,70)(62,69)(63,68)(64,67)(65,66)(71,80)(72,79)(73,78)(74,77)(75,76)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,90)(88,89)(97,100)(98,99)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113), (1,34,99)(2,25,100,12,35,90)(3,36,81)(4,27,82,14,37,92)(5,38,83)(6,29,84,16,39,94)(7,40,85)(8,31,86,18,21,96)(9,22,87)(10,33,88,20,23,98)(11,24,89)(13,26,91)(15,28,93)(17,30,95)(19,32,97)(41,76,113,51,66,103)(42,67,114)(43,78,115,53,68,105)(44,69,116)(45,80,117,55,70,107)(46,71,118)(47,62,119,57,72,109)(48,73,120)(49,64,101,59,74,111)(50,75,102)(52,77,104)(54,79,106)(56,61,108)(58,63,110)(60,65,112), (1,61)(2,70)(3,79)(4,68)(5,77)(6,66)(7,75)(8,64)(9,73)(10,62)(11,71)(12,80)(13,69)(14,78)(15,67)(16,76)(17,65)(18,74)(19,63)(20,72)(21,59)(22,48)(23,57)(24,46)(25,55)(26,44)(27,53)(28,42)(29,51)(30,60)(31,49)(32,58)(33,47)(34,56)(35,45)(36,54)(37,43)(38,52)(39,41)(40,50)(81,106)(82,115)(83,104)(84,113)(85,102)(86,111)(87,120)(88,109)(89,118)(90,107)(91,116)(92,105)(93,114)(94,103)(95,112)(96,101)(97,110)(98,119)(99,108)(100,117)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,26)(22,25)(23,24)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,70)(62,69)(63,68)(64,67)(65,66)(71,80)(72,79)(73,78)(74,77)(75,76)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,90)(88,89)(97,100)(98,99)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113), (1,34,99)(2,25,100,12,35,90)(3,36,81)(4,27,82,14,37,92)(5,38,83)(6,29,84,16,39,94)(7,40,85)(8,31,86,18,21,96)(9,22,87)(10,33,88,20,23,98)(11,24,89)(13,26,91)(15,28,93)(17,30,95)(19,32,97)(41,76,113,51,66,103)(42,67,114)(43,78,115,53,68,105)(44,69,116)(45,80,117,55,70,107)(46,71,118)(47,62,119,57,72,109)(48,73,120)(49,64,101,59,74,111)(50,75,102)(52,77,104)(54,79,106)(56,61,108)(58,63,110)(60,65,112), (1,61)(2,70)(3,79)(4,68)(5,77)(6,66)(7,75)(8,64)(9,73)(10,62)(11,71)(12,80)(13,69)(14,78)(15,67)(16,76)(17,65)(18,74)(19,63)(20,72)(21,59)(22,48)(23,57)(24,46)(25,55)(26,44)(27,53)(28,42)(29,51)(30,60)(31,49)(32,58)(33,47)(34,56)(35,45)(36,54)(37,43)(38,52)(39,41)(40,50)(81,106)(82,115)(83,104)(84,113)(85,102)(86,111)(87,120)(88,109)(89,118)(90,107)(91,116)(92,105)(93,114)(94,103)(95,112)(96,101)(97,110)(98,119)(99,108)(100,117) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,26),(22,25),(23,24),(27,40),(28,39),(29,38),(30,37),(31,36),(32,35),(33,34),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(61,70),(62,69),(63,68),(64,67),(65,66),(71,80),(72,79),(73,78),(74,77),(75,76),(81,96),(82,95),(83,94),(84,93),(85,92),(86,91),(87,90),(88,89),(97,100),(98,99),(101,104),(102,103),(105,120),(106,119),(107,118),(108,117),(109,116),(110,115),(111,114),(112,113)], [(1,34,99),(2,25,100,12,35,90),(3,36,81),(4,27,82,14,37,92),(5,38,83),(6,29,84,16,39,94),(7,40,85),(8,31,86,18,21,96),(9,22,87),(10,33,88,20,23,98),(11,24,89),(13,26,91),(15,28,93),(17,30,95),(19,32,97),(41,76,113,51,66,103),(42,67,114),(43,78,115,53,68,105),(44,69,116),(45,80,117,55,70,107),(46,71,118),(47,62,119,57,72,109),(48,73,120),(49,64,101,59,74,111),(50,75,102),(52,77,104),(54,79,106),(56,61,108),(58,63,110),(60,65,112)], [(1,61),(2,70),(3,79),(4,68),(5,77),(6,66),(7,75),(8,64),(9,73),(10,62),(11,71),(12,80),(13,69),(14,78),(15,67),(16,76),(17,65),(18,74),(19,63),(20,72),(21,59),(22,48),(23,57),(24,46),(25,55),(26,44),(27,53),(28,42),(29,51),(30,60),(31,49),(32,58),(33,47),(34,56),(35,45),(36,54),(37,43),(38,52),(39,41),(40,50),(81,106),(82,115),(83,104),(84,113),(85,102),(86,111),(87,120),(88,109),(89,118),(90,107),(91,116),(92,105),(93,114),(94,103),(95,112),(96,101),(97,110),(98,119),(99,108),(100,117)])

Matrix representation G ⊆ GL6(𝔽61)

6000000
0600000
000001
00006017
0006000
0014400
,
100000
010000
000001
000010
000100
001000
,
010000
6010000
001000
000100
0000600
0000060
,
27240000
51340000
00295400
00593200
00002954
00005932

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,44,0,0,0,60,0,0,0,0,1,17,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0],[0,60,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[27,51,0,0,0,0,24,34,0,0,0,0,0,0,29,59,0,0,0,0,54,32,0,0,0,0,0,0,29,59,0,0,0,0,54,32] >;

57 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C4D4E4F5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F10G10H12A12B15A15B20A20B20C20D20E20F20G20H20I20J30A30B30C30D30E30F60A60B
order122222222223444444556666666101010101010101012121515202020202020202020203030303030306060
size1122610101030303022666103022244101020202244441212420444466661212121244888888

57 irreducible representations

dim1111111111112222222222224444448
type++++++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D5D6D6D6D6D6D10D10D10D10D102+ (1+4)S3×D5D46D6C2×S3×D5C2×S3×D5D48D10D2014D6
kernelD2014D6D20⋊S3D6.D10C12.28D10S3×D20Dic5.D6C2×C3⋊D20D5×C3⋊D4D10⋊D6C3×D4×D5C5×D42S3D4×D15D4×D5D42S3C4×D5D20C5⋊D4C5×D4C22×D5Dic6C4×S3C2×Dic3C3⋊D4C3×D4C15D4C5C4C22C3C1
# reps1111122221111211212224421222442

In GAP, Magma, Sage, TeX

D_{20}\rtimes_{14}D_6
% in TeX

G:=Group("D20:14D6");
// GroupNames label

G:=SmallGroup(480,1102);
// by ID

G=gap.SmallGroup(480,1102);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,675,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^6=d^2=1,b*a*b=a^-1,c*a*c^-1=a^11,d*a*d=a^9,c*b*c^-1=a^10*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽