metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20⋊25D6, D12⋊25D10, Dic6⋊23D10, D60⋊34C22, C30.21C24, D30.7C23, C15⋊12+ (1+4), C60.164C23, Dic30⋊31C22, Dic15.10C23, (C2×C20)⋊8D6, C4○D12⋊8D5, (C6×D20)⋊3C2, (C4×S3)⋊1D10, (C2×C12)⋊8D10, (S3×D20)⋊11C2, (C2×D20)⋊14S3, C3⋊D4⋊13D10, C5⋊1(D4⋊6D6), (C2×C60)⋊4C22, (C22×D5)⋊5D6, C20⋊D6⋊11C2, C3⋊1(D4⋊8D10), C3⋊D20⋊1C22, C15⋊D4⋊1C22, D20⋊S3⋊12C2, D20⋊5S3⋊12C2, D60⋊11C2⋊7C2, (C6×D5).7C23, D6.7(C22×D5), C6.21(C23×D5), (S3×C20)⋊10C22, (C4×D15)⋊12C22, (C5×D12)⋊32C22, (C3×D20)⋊25C22, C15⋊7D4⋊15C22, (S3×C10).7C23, C10.21(S3×C23), (D5×Dic3)⋊1C22, D10.7(C22×S3), (C2×C30).240C23, C20.130(C22×S3), (C5×Dic6)⋊29C22, C12.129(C22×D5), (C5×Dic3).10C23, Dic3.10(C22×D5), (C2×C4)⋊4(S3×D5), (D5×C3⋊D4)⋊1C2, C4.135(C2×S3×D5), (C2×S3×D5)⋊1C22, (D5×C2×C6)⋊6C22, (C5×C4○D12)⋊3C2, C22.10(C2×S3×D5), C2.24(C22×S3×D5), (C5×C3⋊D4)⋊10C22, (C2×C10).12(C22×S3), (C2×C6).248(C22×D5), SmallGroup(480,1093)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1916 in 332 conjugacy classes, 108 normal (36 characteristic)
C1, C2, C2 [×9], C3, C4 [×2], C4 [×4], C22, C22 [×14], C5, S3 [×4], C6, C6 [×5], C2×C4, C2×C4 [×8], D4 [×18], Q8 [×2], C23 [×6], D5 [×6], C10, C10 [×3], Dic3 [×2], Dic3 [×2], C12 [×2], D6 [×2], D6 [×6], C2×C6, C2×C6 [×6], C15, C2×D4 [×9], C4○D4 [×6], Dic5 [×2], C20 [×2], C20 [×2], D10 [×4], D10 [×8], C2×C10, C2×C10 [×2], Dic6, Dic6, C4×S3 [×2], C4×S3 [×2], D12, D12, C2×Dic3 [×4], C3⋊D4 [×2], C3⋊D4 [×10], C2×C12, C3×D4 [×4], C22×S3 [×4], C22×C6 [×2], C5×S3 [×2], C3×D5 [×4], D15 [×2], C30, C30, 2+ (1+4), Dic10, C4×D5 [×6], D20 [×4], D20 [×5], C5⋊D4 [×6], C2×C20, C2×C20 [×2], C5×D4 [×3], C5×Q8, C22×D5 [×2], C22×D5 [×4], C4○D12, C4○D12, S3×D4 [×4], D4⋊2S3 [×4], C2×C3⋊D4 [×4], C6×D4, C5×Dic3 [×2], Dic15 [×2], C60 [×2], S3×D5 [×4], C6×D5 [×4], C6×D5 [×2], S3×C10 [×2], D30 [×2], C2×C30, C2×D20, C2×D20 [×2], C4○D20 [×3], D4×D5 [×6], Q8⋊2D5 [×2], C5×C4○D4, D4⋊6D6, D5×Dic3 [×4], C15⋊D4 [×4], C3⋊D20 [×4], C3×D20 [×4], C5×Dic6, S3×C20 [×2], C5×D12, C5×C3⋊D4 [×2], Dic30, C4×D15 [×2], D60, C15⋊7D4 [×2], C2×C60, C2×S3×D5 [×4], D5×C2×C6 [×2], D4⋊8D10, D20⋊5S3 [×2], D20⋊S3 [×2], S3×D20 [×2], C20⋊D6 [×2], D5×C3⋊D4 [×4], C6×D20, C5×C4○D12, D60⋊11C2, D20⋊25D6
Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C24, D10 [×7], C22×S3 [×7], 2+ (1+4), C22×D5 [×7], S3×C23, S3×D5, C23×D5, D4⋊6D6, C2×S3×D5 [×3], D4⋊8D10, C22×S3×D5, D20⋊25D6
Generators and relations
G = < a,b,c,d | a20=b2=c6=d2=1, bab=cac-1=a-1, dad=a9, cbc-1=a8b, dbd=a18b, dcd=c-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 28)(22 27)(23 26)(24 25)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(41 54)(42 53)(43 52)(44 51)(45 50)(46 49)(47 48)(55 60)(56 59)(57 58)(61 78)(62 77)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)(79 80)(81 82)(83 100)(84 99)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(101 116)(102 115)(103 114)(104 113)(105 112)(106 111)(107 110)(108 109)(117 120)(118 119)
(1 75 48 6 70 53)(2 74 49 5 71 52)(3 73 50 4 72 51)(7 69 54 20 76 47)(8 68 55 19 77 46)(9 67 56 18 78 45)(10 66 57 17 79 44)(11 65 58 16 80 43)(12 64 59 15 61 42)(13 63 60 14 62 41)(21 108 88 24 105 91)(22 107 89 23 106 90)(25 104 92 40 109 87)(26 103 93 39 110 86)(27 102 94 38 111 85)(28 101 95 37 112 84)(29 120 96 36 113 83)(30 119 97 35 114 82)(31 118 98 34 115 81)(32 117 99 33 116 100)
(1 114)(2 103)(3 112)(4 101)(5 110)(6 119)(7 108)(8 117)(9 106)(10 115)(11 104)(12 113)(13 102)(14 111)(15 120)(16 109)(17 118)(18 107)(19 116)(20 105)(21 69)(22 78)(23 67)(24 76)(25 65)(26 74)(27 63)(28 72)(29 61)(30 70)(31 79)(32 68)(33 77)(34 66)(35 75)(36 64)(37 73)(38 62)(39 71)(40 80)(41 94)(42 83)(43 92)(44 81)(45 90)(46 99)(47 88)(48 97)(49 86)(50 95)(51 84)(52 93)(53 82)(54 91)(55 100)(56 89)(57 98)(58 87)(59 96)(60 85)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,54)(42,53)(43,52)(44,51)(45,50)(46,49)(47,48)(55,60)(56,59)(57,58)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(79,80)(81,82)(83,100)(84,99)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)(117,120)(118,119), (1,75,48,6,70,53)(2,74,49,5,71,52)(3,73,50,4,72,51)(7,69,54,20,76,47)(8,68,55,19,77,46)(9,67,56,18,78,45)(10,66,57,17,79,44)(11,65,58,16,80,43)(12,64,59,15,61,42)(13,63,60,14,62,41)(21,108,88,24,105,91)(22,107,89,23,106,90)(25,104,92,40,109,87)(26,103,93,39,110,86)(27,102,94,38,111,85)(28,101,95,37,112,84)(29,120,96,36,113,83)(30,119,97,35,114,82)(31,118,98,34,115,81)(32,117,99,33,116,100), (1,114)(2,103)(3,112)(4,101)(5,110)(6,119)(7,108)(8,117)(9,106)(10,115)(11,104)(12,113)(13,102)(14,111)(15,120)(16,109)(17,118)(18,107)(19,116)(20,105)(21,69)(22,78)(23,67)(24,76)(25,65)(26,74)(27,63)(28,72)(29,61)(30,70)(31,79)(32,68)(33,77)(34,66)(35,75)(36,64)(37,73)(38,62)(39,71)(40,80)(41,94)(42,83)(43,92)(44,81)(45,90)(46,99)(47,88)(48,97)(49,86)(50,95)(51,84)(52,93)(53,82)(54,91)(55,100)(56,89)(57,98)(58,87)(59,96)(60,85)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,54)(42,53)(43,52)(44,51)(45,50)(46,49)(47,48)(55,60)(56,59)(57,58)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(79,80)(81,82)(83,100)(84,99)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(101,116)(102,115)(103,114)(104,113)(105,112)(106,111)(107,110)(108,109)(117,120)(118,119), (1,75,48,6,70,53)(2,74,49,5,71,52)(3,73,50,4,72,51)(7,69,54,20,76,47)(8,68,55,19,77,46)(9,67,56,18,78,45)(10,66,57,17,79,44)(11,65,58,16,80,43)(12,64,59,15,61,42)(13,63,60,14,62,41)(21,108,88,24,105,91)(22,107,89,23,106,90)(25,104,92,40,109,87)(26,103,93,39,110,86)(27,102,94,38,111,85)(28,101,95,37,112,84)(29,120,96,36,113,83)(30,119,97,35,114,82)(31,118,98,34,115,81)(32,117,99,33,116,100), (1,114)(2,103)(3,112)(4,101)(5,110)(6,119)(7,108)(8,117)(9,106)(10,115)(11,104)(12,113)(13,102)(14,111)(15,120)(16,109)(17,118)(18,107)(19,116)(20,105)(21,69)(22,78)(23,67)(24,76)(25,65)(26,74)(27,63)(28,72)(29,61)(30,70)(31,79)(32,68)(33,77)(34,66)(35,75)(36,64)(37,73)(38,62)(39,71)(40,80)(41,94)(42,83)(43,92)(44,81)(45,90)(46,99)(47,88)(48,97)(49,86)(50,95)(51,84)(52,93)(53,82)(54,91)(55,100)(56,89)(57,98)(58,87)(59,96)(60,85) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,28),(22,27),(23,26),(24,25),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(41,54),(42,53),(43,52),(44,51),(45,50),(46,49),(47,48),(55,60),(56,59),(57,58),(61,78),(62,77),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70),(79,80),(81,82),(83,100),(84,99),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(101,116),(102,115),(103,114),(104,113),(105,112),(106,111),(107,110),(108,109),(117,120),(118,119)], [(1,75,48,6,70,53),(2,74,49,5,71,52),(3,73,50,4,72,51),(7,69,54,20,76,47),(8,68,55,19,77,46),(9,67,56,18,78,45),(10,66,57,17,79,44),(11,65,58,16,80,43),(12,64,59,15,61,42),(13,63,60,14,62,41),(21,108,88,24,105,91),(22,107,89,23,106,90),(25,104,92,40,109,87),(26,103,93,39,110,86),(27,102,94,38,111,85),(28,101,95,37,112,84),(29,120,96,36,113,83),(30,119,97,35,114,82),(31,118,98,34,115,81),(32,117,99,33,116,100)], [(1,114),(2,103),(3,112),(4,101),(5,110),(6,119),(7,108),(8,117),(9,106),(10,115),(11,104),(12,113),(13,102),(14,111),(15,120),(16,109),(17,118),(18,107),(19,116),(20,105),(21,69),(22,78),(23,67),(24,76),(25,65),(26,74),(27,63),(28,72),(29,61),(30,70),(31,79),(32,68),(33,77),(34,66),(35,75),(36,64),(37,73),(38,62),(39,71),(40,80),(41,94),(42,83),(43,92),(44,81),(45,90),(46,99),(47,88),(48,97),(49,86),(50,95),(51,84),(52,93),(53,82),(54,91),(55,100),(56,89),(57,98),(58,87),(59,96),(60,85)])
Matrix representation ►G ⊆ GL6(𝔽61)
0 | 60 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 60 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
43 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 48 | 0 | 0 |
0 | 0 | 48 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 14 |
0 | 0 | 0 | 0 | 14 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 14 |
0 | 0 | 0 | 0 | 14 | 0 |
0 | 0 | 0 | 48 | 0 | 0 |
0 | 0 | 48 | 0 | 0 | 0 |
G:=sub<GL(6,GF(61))| [0,1,0,0,0,0,60,18,0,0,0,0,0,0,0,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,60,0],[0,60,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,60,0],[1,43,0,0,0,0,0,60,0,0,0,0,0,0,0,48,0,0,0,0,48,0,0,0,0,0,0,0,0,14,0,0,0,0,14,0],[60,18,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,48,0,0,0,0,48,0,0,0,0,14,0,0,0,0,14,0,0,0] >;
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 12A | 12B | 15A | 15B | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | 20J | 30A | ··· | 30F | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 6 | 6 | 10 | 10 | 10 | 10 | 30 | 30 | 2 | 2 | 2 | 6 | 6 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | ··· | 4 | 4 | ··· | 4 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | D6 | D10 | D10 | D10 | D10 | D10 | 2+ (1+4) | S3×D5 | D4⋊6D6 | C2×S3×D5 | C2×S3×D5 | D4⋊8D10 | D20⋊25D6 |
kernel | D20⋊25D6 | D20⋊5S3 | D20⋊S3 | S3×D20 | C20⋊D6 | D5×C3⋊D4 | C6×D20 | C5×C4○D12 | D60⋊11C2 | C2×D20 | C4○D12 | D20 | C2×C20 | C22×D5 | Dic6 | C4×S3 | D12 | C3⋊D4 | C2×C12 | C15 | C2×C4 | C5 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 2 | 2 | 4 | 2 | 4 | 2 | 1 | 2 | 2 | 4 | 2 | 4 | 8 |
In GAP, Magma, Sage, TeX
D_{20}\rtimes_{25}D_6
% in TeX
G:=Group("D20:25D6");
// GroupNames label
G:=SmallGroup(480,1093);
// by ID
G=gap.SmallGroup(480,1093);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,675,80,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=c^6=d^2=1,b*a*b=c*a*c^-1=a^-1,d*a*d=a^9,c*b*c^-1=a^8*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations