Copied to
clipboard

?

G = D48D30order 480 = 25·3·5

4th semidirect product of D4 and D30 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D48D30, Q88D30, D6028C22, C60.89C23, C30.65C24, D30.30C23, C15122+ (1+4), Dic3039C22, Dic15.32C23, (C2×C4)⋊4D30, C4○D45D15, (C5×D4)⋊24D6, (C2×C20)⋊14D6, C55(D4○D12), (C5×Q8)⋊24D6, (D4×D15)⋊12C2, (C2×D60)⋊16C2, (C3×D4)⋊24D10, (C2×C12)⋊14D10, (C3×Q8)⋊21D10, C35(D48D10), (C2×C60)⋊10C22, Q83D1512C2, C6.65(C23×D5), (C4×D15)⋊11C22, (D4×C15)⋊26C22, C157D412C22, C10.65(S3×C23), (C2×C30).11C23, D6011C218C2, (Q8×C15)⋊23C22, C2.13(C23×D15), C4.32(C22×D15), C20.139(C22×S3), C12.137(C22×D5), (C22×D15)⋊4C22, C22.3(C22×D15), (C5×C4○D4)⋊8S3, (C3×C4○D4)⋊4D5, (C15×C4○D4)⋊4C2, (C2×C6).18(C22×D5), (C2×C10).19(C22×S3), SmallGroup(480,1176)

Series: Derived Chief Lower central Upper central

C1C30 — D48D30
C1C5C15C30D30C22×D15D4×D15 — D48D30
C15C30 — D48D30

Subgroups: 2180 in 332 conjugacy classes, 119 normal (22 characteristic)
C1, C2, C2 [×9], C3, C4, C4 [×3], C4 [×2], C22 [×3], C22 [×12], C5, S3 [×6], C6, C6 [×3], C2×C4 [×3], C2×C4 [×6], D4 [×3], D4 [×15], Q8, Q8, C23 [×6], D5 [×6], C10, C10 [×3], Dic3 [×2], C12, C12 [×3], D6 [×12], C2×C6 [×3], C15, C2×D4 [×9], C4○D4, C4○D4 [×5], Dic5 [×2], C20, C20 [×3], D10 [×12], C2×C10 [×3], Dic6, C4×S3 [×6], D12 [×9], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C3×Q8, C22×S3 [×6], D15 [×6], C30, C30 [×3], 2+ (1+4), Dic10, C4×D5 [×6], D20 [×9], C5⋊D4 [×6], C2×C20 [×3], C5×D4 [×3], C5×Q8, C22×D5 [×6], C2×D12 [×3], C4○D12 [×3], S3×D4 [×6], Q83S3 [×2], C3×C4○D4, Dic15 [×2], C60, C60 [×3], D30 [×6], D30 [×6], C2×C30 [×3], C2×D20 [×3], C4○D20 [×3], D4×D5 [×6], Q82D5 [×2], C5×C4○D4, D4○D12, Dic30, C4×D15 [×6], D60 [×9], C157D4 [×6], C2×C60 [×3], D4×C15 [×3], Q8×C15, C22×D15 [×6], D48D10, C2×D60 [×3], D6011C2 [×3], D4×D15 [×6], Q83D15 [×2], C15×C4○D4, D48D30

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C24, D10 [×7], C22×S3 [×7], D15, 2+ (1+4), C22×D5 [×7], S3×C23, D30 [×7], C23×D5, D4○D12, C22×D15 [×7], D48D10, C23×D15, D48D30

Generators and relations
 G = < a,b,c,d | a4=b2=c30=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, bd=db, dcd=c-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 106 89 31)(2 107 90 32)(3 108 61 33)(4 109 62 34)(5 110 63 35)(6 111 64 36)(7 112 65 37)(8 113 66 38)(9 114 67 39)(10 115 68 40)(11 116 69 41)(12 117 70 42)(13 118 71 43)(14 119 72 44)(15 120 73 45)(16 91 74 46)(17 92 75 47)(18 93 76 48)(19 94 77 49)(20 95 78 50)(21 96 79 51)(22 97 80 52)(23 98 81 53)(24 99 82 54)(25 100 83 55)(26 101 84 56)(27 102 85 57)(28 103 86 58)(29 104 87 59)(30 105 88 60)
(1 31)(2 107)(3 33)(4 109)(5 35)(6 111)(7 37)(8 113)(9 39)(10 115)(11 41)(12 117)(13 43)(14 119)(15 45)(16 91)(17 47)(18 93)(19 49)(20 95)(21 51)(22 97)(23 53)(24 99)(25 55)(26 101)(27 57)(28 103)(29 59)(30 105)(32 90)(34 62)(36 64)(38 66)(40 68)(42 70)(44 72)(46 74)(48 76)(50 78)(52 80)(54 82)(56 84)(58 86)(60 88)(61 108)(63 110)(65 112)(67 114)(69 116)(71 118)(73 120)(75 92)(77 94)(79 96)(81 98)(83 100)(85 102)(87 104)(89 106)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 105)(32 104)(33 103)(34 102)(35 101)(36 100)(37 99)(38 98)(39 97)(40 96)(41 95)(42 94)(43 93)(44 92)(45 91)(46 120)(47 119)(48 118)(49 117)(50 116)(51 115)(52 114)(53 113)(54 112)(55 111)(56 110)(57 109)(58 108)(59 107)(60 106)(61 86)(62 85)(63 84)(64 83)(65 82)(66 81)(67 80)(68 79)(69 78)(70 77)(71 76)(72 75)(73 74)(87 90)(88 89)

G:=sub<Sym(120)| (1,106,89,31)(2,107,90,32)(3,108,61,33)(4,109,62,34)(5,110,63,35)(6,111,64,36)(7,112,65,37)(8,113,66,38)(9,114,67,39)(10,115,68,40)(11,116,69,41)(12,117,70,42)(13,118,71,43)(14,119,72,44)(15,120,73,45)(16,91,74,46)(17,92,75,47)(18,93,76,48)(19,94,77,49)(20,95,78,50)(21,96,79,51)(22,97,80,52)(23,98,81,53)(24,99,82,54)(25,100,83,55)(26,101,84,56)(27,102,85,57)(28,103,86,58)(29,104,87,59)(30,105,88,60), (1,31)(2,107)(3,33)(4,109)(5,35)(6,111)(7,37)(8,113)(9,39)(10,115)(11,41)(12,117)(13,43)(14,119)(15,45)(16,91)(17,47)(18,93)(19,49)(20,95)(21,51)(22,97)(23,53)(24,99)(25,55)(26,101)(27,57)(28,103)(29,59)(30,105)(32,90)(34,62)(36,64)(38,66)(40,68)(42,70)(44,72)(46,74)(48,76)(50,78)(52,80)(54,82)(56,84)(58,86)(60,88)(61,108)(63,110)(65,112)(67,114)(69,116)(71,118)(73,120)(75,92)(77,94)(79,96)(81,98)(83,100)(85,102)(87,104)(89,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,105)(32,104)(33,103)(34,102)(35,101)(36,100)(37,99)(38,98)(39,97)(40,96)(41,95)(42,94)(43,93)(44,92)(45,91)(46,120)(47,119)(48,118)(49,117)(50,116)(51,115)(52,114)(53,113)(54,112)(55,111)(56,110)(57,109)(58,108)(59,107)(60,106)(61,86)(62,85)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)(87,90)(88,89)>;

G:=Group( (1,106,89,31)(2,107,90,32)(3,108,61,33)(4,109,62,34)(5,110,63,35)(6,111,64,36)(7,112,65,37)(8,113,66,38)(9,114,67,39)(10,115,68,40)(11,116,69,41)(12,117,70,42)(13,118,71,43)(14,119,72,44)(15,120,73,45)(16,91,74,46)(17,92,75,47)(18,93,76,48)(19,94,77,49)(20,95,78,50)(21,96,79,51)(22,97,80,52)(23,98,81,53)(24,99,82,54)(25,100,83,55)(26,101,84,56)(27,102,85,57)(28,103,86,58)(29,104,87,59)(30,105,88,60), (1,31)(2,107)(3,33)(4,109)(5,35)(6,111)(7,37)(8,113)(9,39)(10,115)(11,41)(12,117)(13,43)(14,119)(15,45)(16,91)(17,47)(18,93)(19,49)(20,95)(21,51)(22,97)(23,53)(24,99)(25,55)(26,101)(27,57)(28,103)(29,59)(30,105)(32,90)(34,62)(36,64)(38,66)(40,68)(42,70)(44,72)(46,74)(48,76)(50,78)(52,80)(54,82)(56,84)(58,86)(60,88)(61,108)(63,110)(65,112)(67,114)(69,116)(71,118)(73,120)(75,92)(77,94)(79,96)(81,98)(83,100)(85,102)(87,104)(89,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,105)(32,104)(33,103)(34,102)(35,101)(36,100)(37,99)(38,98)(39,97)(40,96)(41,95)(42,94)(43,93)(44,92)(45,91)(46,120)(47,119)(48,118)(49,117)(50,116)(51,115)(52,114)(53,113)(54,112)(55,111)(56,110)(57,109)(58,108)(59,107)(60,106)(61,86)(62,85)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)(87,90)(88,89) );

G=PermutationGroup([(1,106,89,31),(2,107,90,32),(3,108,61,33),(4,109,62,34),(5,110,63,35),(6,111,64,36),(7,112,65,37),(8,113,66,38),(9,114,67,39),(10,115,68,40),(11,116,69,41),(12,117,70,42),(13,118,71,43),(14,119,72,44),(15,120,73,45),(16,91,74,46),(17,92,75,47),(18,93,76,48),(19,94,77,49),(20,95,78,50),(21,96,79,51),(22,97,80,52),(23,98,81,53),(24,99,82,54),(25,100,83,55),(26,101,84,56),(27,102,85,57),(28,103,86,58),(29,104,87,59),(30,105,88,60)], [(1,31),(2,107),(3,33),(4,109),(5,35),(6,111),(7,37),(8,113),(9,39),(10,115),(11,41),(12,117),(13,43),(14,119),(15,45),(16,91),(17,47),(18,93),(19,49),(20,95),(21,51),(22,97),(23,53),(24,99),(25,55),(26,101),(27,57),(28,103),(29,59),(30,105),(32,90),(34,62),(36,64),(38,66),(40,68),(42,70),(44,72),(46,74),(48,76),(50,78),(52,80),(54,82),(56,84),(58,86),(60,88),(61,108),(63,110),(65,112),(67,114),(69,116),(71,118),(73,120),(75,92),(77,94),(79,96),(81,98),(83,100),(85,102),(87,104),(89,106)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,105),(32,104),(33,103),(34,102),(35,101),(36,100),(37,99),(38,98),(39,97),(40,96),(41,95),(42,94),(43,93),(44,92),(45,91),(46,120),(47,119),(48,118),(49,117),(50,116),(51,115),(52,114),(53,113),(54,112),(55,111),(56,110),(57,109),(58,108),(59,107),(60,106),(61,86),(62,85),(63,84),(64,83),(65,82),(66,81),(67,80),(68,79),(69,78),(70,77),(71,76),(72,75),(73,74),(87,90),(88,89)])

Matrix representation G ⊆ GL6(𝔽61)

6000000
0600000
0000327
00005429
0032700
00542900
,
100000
010000
0000327
00005429
00295400
0073200
,
1600000
100000
00001760
000010
00176000
001000
,
100000
1600000
00001760
00004444
00176000
00444400

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,32,54,0,0,0,0,7,29,0,0,32,54,0,0,0,0,7,29,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,29,7,0,0,0,0,54,32,0,0,32,54,0,0,0,0,7,29,0,0],[1,1,0,0,0,0,60,0,0,0,0,0,0,0,0,0,17,1,0,0,0,0,60,0,0,0,17,1,0,0,0,0,60,0,0,0],[1,1,0,0,0,0,0,60,0,0,0,0,0,0,0,0,17,44,0,0,0,0,60,44,0,0,17,44,0,0,0,0,60,44,0,0] >;

87 conjugacy classes

class 1 2A2B2C2D2E···2J 3 4A4B4C4D4E4F5A5B6A6B6C6D10A10B10C···10H12A12B12C12D12E15A15B15C15D20A20B20C20D20E···20J30A30B30C30D30E···30P60A···60H60I···60T
order122222···23444444556666101010···101212121212151515152020202020···203030303030···3060···6060···60
size1122230···30222223030222444224···422444222222224···422224···42···24···4

87 irreducible representations

dim1111112222222222224444
type++++++++++++++++++++++
imageC1C2C2C2C2C2S3D5D6D6D6D10D10D10D15D30D30D302+ (1+4)D4○D12D48D10D48D30
kernelD48D30C2×D60D6011C2D4×D15Q83D15C15×C4○D4C5×C4○D4C3×C4○D4C2×C20C5×D4C5×Q8C2×C12C3×D4C3×Q8C4○D4C2×C4D4Q8C15C5C3C1
# reps133621123316624121241248

In GAP, Magma, Sage, TeX

D_4\rtimes_8D_{30}
% in TeX

G:=Group("D4:8D30");
// GroupNames label

G:=SmallGroup(480,1176);
// by ID

G=gap.SmallGroup(480,1176);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,675,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^30=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽