Extensions 1→N→G→Q→1 with N=C5 and Q=C4⋊C47S3

Direct product G=N×Q with N=C5 and Q=C4⋊C47S3
dρLabelID
C5×C4⋊C47S3240C5xC4:C4:7S3480,771

Semidirect products G=N:Q with N=C5 and Q=C4⋊C47S3
extensionφ:Q→Aut NdρLabelID
C5⋊(C4⋊C47S3) = C4⋊F53S3φ: C4⋊C47S3/C4×S3C4 ⊆ Aut C51208C5:(C4:C4:7S3)480,983
C52(C4⋊C47S3) = D30.23(C2×C4)φ: C4⋊C47S3/C4×Dic3C2 ⊆ Aut C5240C5:2(C4:C4:7S3)480,479
C53(C4⋊C47S3) = (C4×D15)⋊8C4φ: C4⋊C47S3/C4⋊Dic3C2 ⊆ Aut C5240C5:3(C4:C4:7S3)480,423
C54(C4⋊C47S3) = (S3×Dic5)⋊C4φ: C4⋊C47S3/D6⋊C4C2 ⊆ Aut C5240C5:4(C4:C4:7S3)480,476
C55(C4⋊C47S3) = C4⋊C47D15φ: C4⋊C47S3/C3×C4⋊C4C2 ⊆ Aut C5240C5:5(C4:C4:7S3)480,857
C56(C4⋊C47S3) = (S3×C20)⋊5C4φ: C4⋊C47S3/S3×C2×C4C2 ⊆ Aut C5240C5:6(C4:C4:7S3)480,414


׿
×
𝔽