Extensions 1→N→G→Q→1 with N=C3×D5 and Q=C2×D4

Direct product G=N×Q with N=C3×D5 and Q=C2×D4
dρLabelID
C6×D4×D5120C6xD4xD5480,1139

Semidirect products G=N:Q with N=C3×D5 and Q=C2×D4
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊1(C2×D4) = C2×D5×D12φ: C2×D4/C2×C4C2 ⊆ Out C3×D5120(C3xD5):1(C2xD4)480,1087
(C3×D5)⋊2(C2×D4) = S3×D4×D5φ: C2×D4/D4C2 ⊆ Out C3×D5608+(C3xD5):2(C2xD4)480,1097
(C3×D5)⋊3(C2×D4) = C2×D5×C3⋊D4φ: C2×D4/C23C2 ⊆ Out C3×D5120(C3xD5):3(C2xD4)480,1122

Non-split extensions G=N.Q with N=C3×D5 and Q=C2×D4
extensionφ:Q→Out NdρLabelID
(C3×D5).1(C2×D4) = F5×D12φ: C2×D4/C4C22 ⊆ Out C3×D5608+(C3xD5).1(C2xD4)480,995
(C3×D5).2(C2×D4) = S3×C4⋊F5φ: C2×D4/C4C22 ⊆ Out C3×D5608(C3xD5).2(C2xD4)480,996
(C3×D5).3(C2×D4) = D603C4φ: C2×D4/C4C22 ⊆ Out C3×D5608+(C3xD5).3(C2xD4)480,997
(C3×D5).4(C2×D4) = C2×D6⋊F5φ: C2×D4/C22C22 ⊆ Out C3×D5120(C3xD5).4(C2xD4)480,1000
(C3×D5).5(C2×D4) = C2×Dic3⋊F5φ: C2×D4/C22C22 ⊆ Out C3×D5120(C3xD5).5(C2xD4)480,1001
(C3×D5).6(C2×D4) = F5×C3⋊D4φ: C2×D4/C22C22 ⊆ Out C3×D5608(C3xD5).6(C2xD4)480,1010
(C3×D5).7(C2×D4) = S3×C22⋊F5φ: C2×D4/C22C22 ⊆ Out C3×D5608+(C3xD5).7(C2xD4)480,1011
(C3×D5).8(C2×D4) = C3⋊D4⋊F5φ: C2×D4/C22C22 ⊆ Out C3×D5608(C3xD5).8(C2xD4)480,1012
(C3×D5).9(C2×D4) = C2×C60⋊C4φ: C2×D4/C2×C4C2 ⊆ Out C3×D5120(C3xD5).9(C2xD4)480,1064
(C3×D5).10(C2×D4) = C6×C4⋊F5φ: C2×D4/C2×C4C2 ⊆ Out C3×D5120(C3xD5).10(C2xD4)480,1051
(C3×D5).11(C2×D4) = D4×C3⋊F5φ: C2×D4/D4C2 ⊆ Out C3×D5608(C3xD5).11(C2xD4)480,1067
(C3×D5).12(C2×D4) = C3×D4×F5φ: C2×D4/D4C2 ⊆ Out C3×D5608(C3xD5).12(C2xD4)480,1054
(C3×D5).13(C2×D4) = C2×D10.D6φ: C2×D4/C23C2 ⊆ Out C3×D5120(C3xD5).13(C2xD4)480,1072
(C3×D5).14(C2×D4) = C6×C22⋊F5φ: C2×D4/C23C2 ⊆ Out C3×D5120(C3xD5).14(C2xD4)480,1059

׿
×
𝔽