Extensions 1→N→G→Q→1 with N=C3xD5 and Q=C4oD4

Direct product G=NxQ with N=C3xD5 and Q=C4oD4
dρLabelID
C3xD5xC4oD41204C3xD5xC4oD4480,1145

Semidirect products G=N:Q with N=C3xD5 and Q=C4oD4
extensionφ:Q→Out NdρLabelID
(C3xD5):1(C4oD4) = D5xC4oD12φ: C4oD4/C2xC4C2 ⊆ Out C3xD51204(C3xD5):1(C4oD4)480,1090
(C3xD5):2(C4oD4) = D5xD4:2S3φ: C4oD4/D4C2 ⊆ Out C3xD51208-(C3xD5):2(C4oD4)480,1098
(C3xD5):3(C4oD4) = D5xQ8:3S3φ: C4oD4/Q8C2 ⊆ Out C3xD51208+(C3xD5):3(C4oD4)480,1108

Non-split extensions G=N.Q with N=C3xD5 and Q=C4oD4
extensionφ:Q→Out NdρLabelID
(C3xD5).1(C4oD4) = F5xDic6φ: C4oD4/C4C22 ⊆ Out C3xD51208-(C3xD5).1(C4oD4)480,982
(C3xD5).2(C4oD4) = C4:F5:3S3φ: C4oD4/C4C22 ⊆ Out C3xD51208(C3xD5).2(C4oD4)480,983
(C3xD5).3(C4oD4) = Dic6:5F5φ: C4oD4/C4C22 ⊆ Out C3xD51208-(C3xD5).3(C4oD4)480,984
(C3xD5).4(C4oD4) = (C4xS3):F5φ: C4oD4/C4C22 ⊆ Out C3xD51208(C3xD5).4(C4oD4)480,985
(C3xD5).5(C4oD4) = F5xD12φ: C4oD4/C4C22 ⊆ Out C3xD5608+(C3xD5).5(C4oD4)480,995
(C3xD5).6(C4oD4) = D60:3C4φ: C4oD4/C4C22 ⊆ Out C3xD5608+(C3xD5).6(C4oD4)480,997
(C3xD5).7(C4oD4) = C22:F5.S3φ: C4oD4/C22C22 ⊆ Out C3xD51208-(C3xD5).7(C4oD4)480,999
(C3xD5).8(C4oD4) = F5xC3:D4φ: C4oD4/C22C22 ⊆ Out C3xD5608(C3xD5).8(C4oD4)480,1010
(C3xD5).9(C4oD4) = C3:D4:F5φ: C4oD4/C22C22 ⊆ Out C3xD5608(C3xD5).9(C4oD4)480,1012
(C3xD5).10(C4oD4) = (C2xC12):6F5φ: C4oD4/C2xC4C2 ⊆ Out C3xD51204(C3xD5).10(C4oD4)480,1065
(C3xD5).11(C4oD4) = C3xD10.C23φ: C4oD4/C2xC4C2 ⊆ Out C3xD51204(C3xD5).11(C4oD4)480,1052
(C3xD5).12(C4oD4) = D4xC3:F5φ: C4oD4/D4C2 ⊆ Out C3xD5608(C3xD5).12(C4oD4)480,1067
(C3xD5).13(C4oD4) = C3xD4xF5φ: C4oD4/D4C2 ⊆ Out C3xD5608(C3xD5).13(C4oD4)480,1054
(C3xD5).14(C4oD4) = Q8xC3:F5φ: C4oD4/Q8C2 ⊆ Out C3xD51208(C3xD5).14(C4oD4)480,1069
(C3xD5).15(C4oD4) = C3xQ8xF5φ: C4oD4/Q8C2 ⊆ Out C3xD51208(C3xD5).15(C4oD4)480,1056

׿
x
:
Z
F
o
wr
Q
<