direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3×Q8×F5, Dic10⋊3C12, C5⋊(Q8×C12), C15⋊14(C4×Q8), C4⋊F5.2C6, C4.7(C6×F5), (Q8×C15)⋊6C4, (C5×Q8)⋊5C12, (C4×F5).1C6, (Q8×D5).5C6, D5.2(C6×Q8), C20.7(C2×C12), C60.46(C2×C4), (C12×F5).4C2, C12.46(C2×F5), (C3×Dic10)⋊6C4, C6.54(C22×F5), C30.92(C22×C4), Dic5.2(C2×C12), (C6×D5).71C23, (C6×F5).18C22, C10.10(C22×C12), D10.12(C22×C6), (D5×C12).89C22, C2.11(C2×C6×F5), (C3×Q8×D5).6C2, (C3×C4⋊F5).6C2, D5.3(C3×C4○D4), (C2×F5).4(C2×C6), (C3×D5).8(C2×Q8), (C4×D5).14(C2×C6), (C3×D5).15(C4○D4), (C3×Dic5).34(C2×C4), SmallGroup(480,1056)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Q8×F5
G = < a,b,c,d,e | a3=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 408 in 140 conjugacy classes, 76 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C2×C4, Q8, Q8, D5, C10, C12, C12, C2×C6, C15, C42, C4⋊C4, C2×Q8, Dic5, C20, F5, F5, D10, C2×C12, C3×Q8, C3×Q8, C3×D5, C30, C4×Q8, Dic10, C4×D5, C5×Q8, C2×F5, C2×F5, C4×C12, C3×C4⋊C4, C6×Q8, C3×Dic5, C60, C3×F5, C3×F5, C6×D5, C4×F5, C4⋊F5, Q8×D5, Q8×C12, C3×Dic10, D5×C12, Q8×C15, C6×F5, C6×F5, Q8×F5, C12×F5, C3×C4⋊F5, C3×Q8×D5, C3×Q8×F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, Q8, C23, C12, C2×C6, C22×C4, C2×Q8, C4○D4, F5, C2×C12, C3×Q8, C22×C6, C4×Q8, C2×F5, C22×C12, C6×Q8, C3×C4○D4, C3×F5, C22×F5, Q8×C12, C6×F5, Q8×F5, C2×C6×F5, C3×Q8×F5
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 111 101)(92 112 102)(93 113 103)(94 114 104)(95 115 105)(96 116 106)(97 117 107)(98 118 108)(99 119 109)(100 120 110)
(1 36 6 31)(2 37 7 32)(3 38 8 33)(4 39 9 34)(5 40 10 35)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 56 26 51)(22 57 27 52)(23 58 28 53)(24 59 29 54)(25 60 30 55)(61 91 66 96)(62 92 67 97)(63 93 68 98)(64 94 69 99)(65 95 70 100)(71 101 76 106)(72 102 77 107)(73 103 78 108)(74 104 79 109)(75 105 80 110)(81 111 86 116)(82 112 87 117)(83 113 88 118)(84 114 89 119)(85 115 90 120)
(1 66 6 61)(2 67 7 62)(3 68 8 63)(4 69 9 64)(5 70 10 65)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 86 26 81)(22 87 27 82)(23 88 28 83)(24 89 29 84)(25 90 30 85)(31 96 36 91)(32 97 37 92)(33 98 38 93)(34 99 39 94)(35 100 40 95)(41 106 46 101)(42 107 47 102)(43 108 48 103)(44 109 49 104)(45 110 50 105)(51 116 56 111)(52 117 57 112)(53 118 58 113)(54 119 59 114)(55 120 60 115)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)(22 23 25 24)(27 28 30 29)(32 33 35 34)(37 38 40 39)(42 43 45 44)(47 48 50 49)(52 53 55 54)(57 58 60 59)(62 63 65 64)(67 68 70 69)(72 73 75 74)(77 78 80 79)(82 83 85 84)(87 88 90 89)(92 93 95 94)(97 98 100 99)(102 103 105 104)(107 108 110 109)(112 113 115 114)(117 118 120 119)
G:=sub<Sym(120)| (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,36,6,31)(2,37,7,32)(3,38,8,33)(4,39,9,34)(5,40,10,35)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(61,91,66,96)(62,92,67,97)(63,93,68,98)(64,94,69,99)(65,95,70,100)(71,101,76,106)(72,102,77,107)(73,103,78,108)(74,104,79,109)(75,105,80,110)(81,111,86,116)(82,112,87,117)(83,113,88,118)(84,114,89,119)(85,115,90,120), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)(32,33,35,34)(37,38,40,39)(42,43,45,44)(47,48,50,49)(52,53,55,54)(57,58,60,59)(62,63,65,64)(67,68,70,69)(72,73,75,74)(77,78,80,79)(82,83,85,84)(87,88,90,89)(92,93,95,94)(97,98,100,99)(102,103,105,104)(107,108,110,109)(112,113,115,114)(117,118,120,119)>;
G:=Group( (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,36,6,31)(2,37,7,32)(3,38,8,33)(4,39,9,34)(5,40,10,35)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(61,91,66,96)(62,92,67,97)(63,93,68,98)(64,94,69,99)(65,95,70,100)(71,101,76,106)(72,102,77,107)(73,103,78,108)(74,104,79,109)(75,105,80,110)(81,111,86,116)(82,112,87,117)(83,113,88,118)(84,114,89,119)(85,115,90,120), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)(32,33,35,34)(37,38,40,39)(42,43,45,44)(47,48,50,49)(52,53,55,54)(57,58,60,59)(62,63,65,64)(67,68,70,69)(72,73,75,74)(77,78,80,79)(82,83,85,84)(87,88,90,89)(92,93,95,94)(97,98,100,99)(102,103,105,104)(107,108,110,109)(112,113,115,114)(117,118,120,119) );
G=PermutationGroup([[(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,111,101),(92,112,102),(93,113,103),(94,114,104),(95,115,105),(96,116,106),(97,117,107),(98,118,108),(99,119,109),(100,120,110)], [(1,36,6,31),(2,37,7,32),(3,38,8,33),(4,39,9,34),(5,40,10,35),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,56,26,51),(22,57,27,52),(23,58,28,53),(24,59,29,54),(25,60,30,55),(61,91,66,96),(62,92,67,97),(63,93,68,98),(64,94,69,99),(65,95,70,100),(71,101,76,106),(72,102,77,107),(73,103,78,108),(74,104,79,109),(75,105,80,110),(81,111,86,116),(82,112,87,117),(83,113,88,118),(84,114,89,119),(85,115,90,120)], [(1,66,6,61),(2,67,7,62),(3,68,8,63),(4,69,9,64),(5,70,10,65),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,86,26,81),(22,87,27,82),(23,88,28,83),(24,89,29,84),(25,90,30,85),(31,96,36,91),(32,97,37,92),(33,98,38,93),(34,99,39,94),(35,100,40,95),(41,106,46,101),(42,107,47,102),(43,108,48,103),(44,109,49,104),(45,110,50,105),(51,116,56,111),(52,117,57,112),(53,118,58,113),(54,119,59,114),(55,120,60,115)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19),(22,23,25,24),(27,28,30,29),(32,33,35,34),(37,38,40,39),(42,43,45,44),(47,48,50,49),(52,53,55,54),(57,58,60,59),(62,63,65,64),(67,68,70,69),(72,73,75,74),(77,78,80,79),(82,83,85,84),(87,88,90,89),(92,93,95,94),(97,98,100,99),(102,103,105,104),(107,108,110,109),(112,113,115,114),(117,118,120,119)]])
75 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4P | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 10 | 12A | ··· | 12F | 12G | ··· | 12N | 12O | ··· | 12AF | 15A | 15B | 20A | 20B | 20C | 30A | 30B | 60A | ··· | 60F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 15 | 15 | 20 | 20 | 20 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 5 | 5 | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 4 | 1 | 1 | 5 | 5 | 5 | 5 | 4 | 2 | ··· | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 8 | 8 | 8 | 4 | 4 | 8 | ··· | 8 |
75 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | - | + | + | - | ||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | Q8 | C4○D4 | C3×Q8 | C3×C4○D4 | F5 | C2×F5 | C3×F5 | C6×F5 | Q8×F5 | C3×Q8×F5 |
kernel | C3×Q8×F5 | C12×F5 | C3×C4⋊F5 | C3×Q8×D5 | Q8×F5 | C3×Dic10 | Q8×C15 | C4×F5 | C4⋊F5 | Q8×D5 | Dic10 | C5×Q8 | C3×F5 | C3×D5 | F5 | D5 | C3×Q8 | C12 | Q8 | C4 | C3 | C1 |
# reps | 1 | 3 | 3 | 1 | 2 | 6 | 2 | 6 | 6 | 2 | 12 | 4 | 2 | 2 | 4 | 4 | 1 | 3 | 2 | 6 | 1 | 2 |
Matrix representation of C3×Q8×F5 ►in GL6(𝔽61)
47 | 0 | 0 | 0 | 0 | 0 |
0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 37 | 0 | 0 | 0 | 0 |
56 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
56 | 56 | 0 | 0 | 0 | 0 |
54 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 60 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 60 |
G:=sub<GL(6,GF(61))| [47,0,0,0,0,0,0,47,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,56,0,0,0,0,37,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[56,54,0,0,0,0,56,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,1,0,0,0,60,0,0,1,0,0,60,0,0,0],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,60,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,1,0,60] >;
C3×Q8×F5 in GAP, Magma, Sage, TeX
C_3\times Q_8\times F_5
% in TeX
G:=Group("C3xQ8xF5");
// GroupNames label
G:=SmallGroup(480,1056);
// by ID
G=gap.SmallGroup(480,1056);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,168,344,555,268,9414,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations