Extensions 1→N→G→Q→1 with N=C5×D12 and Q=C4

Direct product G=N×Q with N=C5×D12 and Q=C4
dρLabelID
C20×D12240C20xD12480,752

Semidirect products G=N:Q with N=C5×D12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×D12)⋊1C4 = D60⋊C4φ: C4/C1C4 ⊆ Out C5×D121208+(C5xD12):1C4480,227
(C5×D12)⋊2C4 = D124F5φ: C4/C1C4 ⊆ Out C5×D121208-(C5xD12):2C4480,231
(C5×D12)⋊3C4 = D603C4φ: C4/C1C4 ⊆ Out C5×D12608+(C5xD12):3C4480,997
(C5×D12)⋊4C4 = D12⋊F5φ: C4/C1C4 ⊆ Out C5×D121208+(C5xD12):4C4480,228
(C5×D12)⋊5C4 = D122F5φ: C4/C1C4 ⊆ Out C5×D121208-(C5xD12):5C4480,232
(C5×D12)⋊6C4 = F5×D12φ: C4/C1C4 ⊆ Out C5×D12608+(C5xD12):6C4480,995
(C5×D12)⋊7C4 = C10.D24φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):7C4480,43
(C5×D12)⋊8C4 = C60.99D4φ: C4/C2C2 ⊆ Out C5×D121204(C5xD12):8C4480,55
(C5×D12)⋊9C4 = Dic5×D12φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):9C4480,491
(C5×D12)⋊10C4 = D12⋊Dic5φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):10C4480,42
(C5×D12)⋊11C4 = C60.98D4φ: C4/C2C2 ⊆ Out C5×D121204(C5xD12):11C4480,54
(C5×D12)⋊12C4 = Dic158D4φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):12C4480,511
(C5×D12)⋊13C4 = C5×C424S3φ: C4/C2C2 ⊆ Out C5×D121202(C5xD12):13C4480,124
(C5×D12)⋊14C4 = C5×C2.D24φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):14C4480,140
(C5×D12)⋊15C4 = C5×C6.D8φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):15C4480,128
(C5×D12)⋊16C4 = C5×D12⋊C4φ: C4/C2C2 ⊆ Out C5×D121204(C5xD12):16C4480,144
(C5×D12)⋊17C4 = C5×Dic35D4φ: C4/C2C2 ⊆ Out C5×D12240(C5xD12):17C4480,772

Non-split extensions G=N.Q with N=C5×D12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×D12).1C4 = D12.F5φ: C4/C1C4 ⊆ Out C5×D122408-(C5xD12).1C4480,989
(C5×D12).2C4 = D12.2F5φ: C4/C1C4 ⊆ Out C5×D122408-(C5xD12).2C4480,987
(C5×D12).3C4 = D12.2Dic5φ: C4/C2C2 ⊆ Out C5×D122404(C5xD12).3C4480,362
(C5×D12).4C4 = D12.Dic5φ: C4/C2C2 ⊆ Out C5×D122404(C5xD12).4C4480,364
(C5×D12).5C4 = C5×D12.C4φ: C4/C2C2 ⊆ Out C5×D122404(C5xD12).5C4480,786
(C5×D12).6C4 = C5×C8○D12φ: trivial image2402(C5xD12).6C4480,780

׿
×
𝔽