Copied to
clipboard

G = D12⋊F5order 480 = 25·3·5

1st semidirect product of D12 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D604C4, D121F5, D5.2D24, D10.18D12, D5⋊C81S3, C5⋊(C2.D24), C4.1(S3×F5), (C5×D12)⋊4C4, C20.2(C4×S3), C60.8(C2×C4), C60⋊C41C2, (C3×D5).2D8, C31(D20⋊C4), (C6×D5).18D4, (C4×D5).20D6, (D5×D12).5C2, C2.5(D6⋊F5), C12.22(C2×F5), C152(D4⋊C4), C10.2(D6⋊C4), (C3×D5).2SD16, C6.2(C22⋊F5), D5.3(C24⋊C2), C30.2(C22⋊C4), (C3×Dic5).21D4, Dic5.1(C3⋊D4), (D5×C12).38C22, (C3×D5⋊C8)⋊1C2, SmallGroup(480,228)

Series: Derived Chief Lower central Upper central

C1C60 — D12⋊F5
C1C5C15C30C3×Dic5D5×C12C3×D5⋊C8 — D12⋊F5
C15C30C60 — D12⋊F5
C1C2C4

Generators and relations for D12⋊F5
 G = < a,b,c,d | a12=b2=c5=d4=1, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=a7b, dcd-1=c3 >

Subgroups: 836 in 100 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, C23, D5, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C4⋊C4, C2×C8, C2×D4, Dic5, C20, F5, D10, D10, C2×C10, C24, D12, D12, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, D4⋊C4, C5⋊C8, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C22×D5, C4⋊Dic3, C2×C24, C2×D12, C3×Dic5, C60, C3⋊F5, S3×D5, C6×D5, S3×C10, D30, D5⋊C8, C4⋊F5, D4×D5, C2.D24, C3×C5⋊C8, C5⋊D12, D5×C12, C5×D12, D60, C2×C3⋊F5, C2×S3×D5, D20⋊C4, C3×D5⋊C8, C60⋊C4, D5×D12, D12⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, F5, C4×S3, D12, C3⋊D4, D4⋊C4, C2×F5, C24⋊C2, D24, D6⋊C4, C22⋊F5, C2.D24, S3×F5, D20⋊C4, D6⋊F5, D12⋊F5

Smallest permutation representation of D12⋊F5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 71)(2 70)(3 69)(4 68)(5 67)(6 66)(7 65)(8 64)(9 63)(10 62)(11 61)(12 72)(13 120)(14 119)(15 118)(16 117)(17 116)(18 115)(19 114)(20 113)(21 112)(22 111)(23 110)(24 109)(25 75)(26 74)(27 73)(28 84)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 56)(38 55)(39 54)(40 53)(41 52)(42 51)(43 50)(44 49)(45 60)(46 59)(47 58)(48 57)(85 104)(86 103)(87 102)(88 101)(89 100)(90 99)(91 98)(92 97)(93 108)(94 107)(95 106)(96 105)
(1 19 90 73 43)(2 20 91 74 44)(3 21 92 75 45)(4 22 93 76 46)(5 23 94 77 47)(6 24 95 78 48)(7 13 96 79 37)(8 14 85 80 38)(9 15 86 81 39)(10 16 87 82 40)(11 17 88 83 41)(12 18 89 84 42)(25 60 69 112 97)(26 49 70 113 98)(27 50 71 114 99)(28 51 72 115 100)(29 52 61 116 101)(30 53 62 117 102)(31 54 63 118 103)(32 55 64 119 104)(33 56 65 120 105)(34 57 66 109 106)(35 58 67 110 107)(36 59 68 111 108)
(1 4)(2 3)(5 12)(6 11)(7 10)(8 9)(13 87 37 82)(14 86 38 81)(15 85 39 80)(16 96 40 79)(17 95 41 78)(18 94 42 77)(19 93 43 76)(20 92 44 75)(21 91 45 74)(22 90 46 73)(23 89 47 84)(24 88 48 83)(25 118 97 54)(26 117 98 53)(27 116 99 52)(28 115 100 51)(29 114 101 50)(30 113 102 49)(31 112 103 60)(32 111 104 59)(33 110 105 58)(34 109 106 57)(35 120 107 56)(36 119 108 55)(61 71)(62 70)(63 69)(64 68)(65 67)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,71)(2,70)(3,69)(4,68)(5,67)(6,66)(7,65)(8,64)(9,63)(10,62)(11,61)(12,72)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,112)(22,111)(23,110)(24,109)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,60)(46,59)(47,58)(48,57)(85,104)(86,103)(87,102)(88,101)(89,100)(90,99)(91,98)(92,97)(93,108)(94,107)(95,106)(96,105), (1,19,90,73,43)(2,20,91,74,44)(3,21,92,75,45)(4,22,93,76,46)(5,23,94,77,47)(6,24,95,78,48)(7,13,96,79,37)(8,14,85,80,38)(9,15,86,81,39)(10,16,87,82,40)(11,17,88,83,41)(12,18,89,84,42)(25,60,69,112,97)(26,49,70,113,98)(27,50,71,114,99)(28,51,72,115,100)(29,52,61,116,101)(30,53,62,117,102)(31,54,63,118,103)(32,55,64,119,104)(33,56,65,120,105)(34,57,66,109,106)(35,58,67,110,107)(36,59,68,111,108), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,87,37,82)(14,86,38,81)(15,85,39,80)(16,96,40,79)(17,95,41,78)(18,94,42,77)(19,93,43,76)(20,92,44,75)(21,91,45,74)(22,90,46,73)(23,89,47,84)(24,88,48,83)(25,118,97,54)(26,117,98,53)(27,116,99,52)(28,115,100,51)(29,114,101,50)(30,113,102,49)(31,112,103,60)(32,111,104,59)(33,110,105,58)(34,109,106,57)(35,120,107,56)(36,119,108,55)(61,71)(62,70)(63,69)(64,68)(65,67)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,71)(2,70)(3,69)(4,68)(5,67)(6,66)(7,65)(8,64)(9,63)(10,62)(11,61)(12,72)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,112)(22,111)(23,110)(24,109)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,60)(46,59)(47,58)(48,57)(85,104)(86,103)(87,102)(88,101)(89,100)(90,99)(91,98)(92,97)(93,108)(94,107)(95,106)(96,105), (1,19,90,73,43)(2,20,91,74,44)(3,21,92,75,45)(4,22,93,76,46)(5,23,94,77,47)(6,24,95,78,48)(7,13,96,79,37)(8,14,85,80,38)(9,15,86,81,39)(10,16,87,82,40)(11,17,88,83,41)(12,18,89,84,42)(25,60,69,112,97)(26,49,70,113,98)(27,50,71,114,99)(28,51,72,115,100)(29,52,61,116,101)(30,53,62,117,102)(31,54,63,118,103)(32,55,64,119,104)(33,56,65,120,105)(34,57,66,109,106)(35,58,67,110,107)(36,59,68,111,108), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,87,37,82)(14,86,38,81)(15,85,39,80)(16,96,40,79)(17,95,41,78)(18,94,42,77)(19,93,43,76)(20,92,44,75)(21,91,45,74)(22,90,46,73)(23,89,47,84)(24,88,48,83)(25,118,97,54)(26,117,98,53)(27,116,99,52)(28,115,100,51)(29,114,101,50)(30,113,102,49)(31,112,103,60)(32,111,104,59)(33,110,105,58)(34,109,106,57)(35,120,107,56)(36,119,108,55)(61,71)(62,70)(63,69)(64,68)(65,67) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,71),(2,70),(3,69),(4,68),(5,67),(6,66),(7,65),(8,64),(9,63),(10,62),(11,61),(12,72),(13,120),(14,119),(15,118),(16,117),(17,116),(18,115),(19,114),(20,113),(21,112),(22,111),(23,110),(24,109),(25,75),(26,74),(27,73),(28,84),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,56),(38,55),(39,54),(40,53),(41,52),(42,51),(43,50),(44,49),(45,60),(46,59),(47,58),(48,57),(85,104),(86,103),(87,102),(88,101),(89,100),(90,99),(91,98),(92,97),(93,108),(94,107),(95,106),(96,105)], [(1,19,90,73,43),(2,20,91,74,44),(3,21,92,75,45),(4,22,93,76,46),(5,23,94,77,47),(6,24,95,78,48),(7,13,96,79,37),(8,14,85,80,38),(9,15,86,81,39),(10,16,87,82,40),(11,17,88,83,41),(12,18,89,84,42),(25,60,69,112,97),(26,49,70,113,98),(27,50,71,114,99),(28,51,72,115,100),(29,52,61,116,101),(30,53,62,117,102),(31,54,63,118,103),(32,55,64,119,104),(33,56,65,120,105),(34,57,66,109,106),(35,58,67,110,107),(36,59,68,111,108)], [(1,4),(2,3),(5,12),(6,11),(7,10),(8,9),(13,87,37,82),(14,86,38,81),(15,85,39,80),(16,96,40,79),(17,95,41,78),(18,94,42,77),(19,93,43,76),(20,92,44,75),(21,91,45,74),(22,90,46,73),(23,89,47,84),(24,88,48,83),(25,118,97,54),(26,117,98,53),(27,116,99,52),(28,115,100,51),(29,114,101,50),(30,113,102,49),(31,112,103,60),(32,111,104,59),(33,110,105,58),(34,109,106,57),(35,120,107,56),(36,119,108,55),(61,71),(62,70),(63,69),(64,68),(65,67)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D 5 6A6B6C8A8B8C8D10A10B10C12A12B12C12D 15  20 24A···24H 30 60A60B
order122222344445666888810101012121212152024···24306060
size115512602210606042101010101010424242210108810···10888

39 irreducible representations

dim111111222222222224448888
type++++++++++++++++++
imageC1C2C2C2C4C4S3D4D4D6D8SD16C3⋊D4C4×S3D12C24⋊C2D24F5C2×F5C22⋊F5S3×F5D20⋊C4D6⋊F5D12⋊F5
kernelD12⋊F5C3×D5⋊C8C60⋊C4D5×D12C5×D12D60D5⋊C8C3×Dic5C6×D5C4×D5C3×D5C3×D5Dic5C20D10D5D5D12C12C6C4C3C2C1
# reps111122111122222441121112

Matrix representation of D12⋊F5 in GL6(𝔽241)

142990000
142430000
001000
000100
000010
000001
,
1271360000
91140000
001000
000100
000010
000001
,
100000
010000
00240240240240
001000
000100
000010
,
1711010000
171700000
001000
000001
000100
00240240240240

G:=sub<GL(6,GF(241))| [142,142,0,0,0,0,99,43,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[127,9,0,0,0,0,136,114,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,1,0,0,0,0,240,0,1,0,0,0,240,0,0,1,0,0,240,0,0,0],[171,171,0,0,0,0,101,70,0,0,0,0,0,0,1,0,0,240,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,1,0,240] >;

D12⋊F5 in GAP, Magma, Sage, TeX

D_{12}\rtimes F_5
% in TeX

G:=Group("D12:F5");
// GroupNames label

G:=SmallGroup(480,228);
// by ID

G=gap.SmallGroup(480,228);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,100,346,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^5=d^4=1,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^7*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽