Copied to
clipboard

G = D122F5order 480 = 25·3·5

2nd semidirect product of D12 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D122F5, Dic305C4, Dic5.20D12, C152C4≀C2, (C4×F5)⋊1S3, C4.3(S3×F5), (C5×D12)⋊5C4, C20.6(C4×S3), (C12×F5)⋊1C2, C60.10(C2×C4), C32(D4⋊F5), (C6×D5).22D4, (C4×D5).24D6, C2.9(D6⋊F5), C12.24(C2×F5), C12.F51C2, C52(C424S3), C10.6(D6⋊C4), C6.6(C22⋊F5), D125D5.5C2, D10.1(C3⋊D4), C30.6(C22⋊C4), (C3×Dic5).25D4, (D5×C12).40C22, SmallGroup(480,232)

Series: Derived Chief Lower central Upper central

C1C60 — D122F5
C1C5C15C30C6×D5D5×C12C12×F5 — D122F5
C15C30C60 — D122F5
C1C2C4

Generators and relations for D122F5
 G = < a,b,c,d | a12=b2=c5=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a9b, dcd-1=c3 >

Subgroups: 500 in 88 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, Q8, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, Dic5, C20, F5, D10, C2×C10, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C5×S3, C3×D5, C30, C4≀C2, C5⋊C8, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5×D4, C2×F5, C4.Dic3, C4×C12, C4○D12, C3×Dic5, Dic15, C60, C3×F5, C6×D5, S3×C10, C4.F5, C4×F5, D42D5, C424S3, C15⋊C8, S3×Dic5, C15⋊D4, D5×C12, C5×D12, Dic30, C6×F5, D4⋊F5, C12×F5, C12.F5, D125D5, D122F5
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, F5, C4×S3, D12, C3⋊D4, C4≀C2, C2×F5, D6⋊C4, C22⋊F5, C424S3, S3×F5, D4⋊F5, D6⋊F5, D122F5

Smallest permutation representation of D122F5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 107)(14 106)(15 105)(16 104)(17 103)(18 102)(19 101)(20 100)(21 99)(22 98)(23 97)(24 108)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 96)(44 95)(45 94)(46 93)(47 92)(48 91)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(57 63)(58 62)(59 61)(60 72)(73 111)(74 110)(75 109)(76 120)(77 119)(78 118)(79 117)(80 116)(81 115)(82 114)(83 113)(84 112)
(1 81 108 96 65)(2 82 97 85 66)(3 83 98 86 67)(4 84 99 87 68)(5 73 100 88 69)(6 74 101 89 70)(7 75 102 90 71)(8 76 103 91 72)(9 77 104 92 61)(10 78 105 93 62)(11 79 106 94 63)(12 80 107 95 64)(13 44 56 31 116)(14 45 57 32 117)(15 46 58 33 118)(16 47 59 34 119)(17 48 60 35 120)(18 37 49 36 109)(19 38 50 25 110)(20 39 51 26 111)(21 40 52 27 112)(22 41 53 28 113)(23 42 54 29 114)(24 43 55 30 115)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 59 38 113)(14 60 39 114)(15 49 40 115)(16 50 41 116)(17 51 42 117)(18 52 43 118)(19 53 44 119)(20 54 45 120)(21 55 46 109)(22 56 47 110)(23 57 48 111)(24 58 37 112)(25 28 31 34)(26 29 32 35)(27 30 33 36)(61 86 77 98)(62 87 78 99)(63 88 79 100)(64 89 80 101)(65 90 81 102)(66 91 82 103)(67 92 83 104)(68 93 84 105)(69 94 73 106)(70 95 74 107)(71 96 75 108)(72 85 76 97)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,98)(23,97)(24,108)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(60,72)(73,111)(74,110)(75,109)(76,120)(77,119)(78,118)(79,117)(80,116)(81,115)(82,114)(83,113)(84,112), (1,81,108,96,65)(2,82,97,85,66)(3,83,98,86,67)(4,84,99,87,68)(5,73,100,88,69)(6,74,101,89,70)(7,75,102,90,71)(8,76,103,91,72)(9,77,104,92,61)(10,78,105,93,62)(11,79,106,94,63)(12,80,107,95,64)(13,44,56,31,116)(14,45,57,32,117)(15,46,58,33,118)(16,47,59,34,119)(17,48,60,35,120)(18,37,49,36,109)(19,38,50,25,110)(20,39,51,26,111)(21,40,52,27,112)(22,41,53,28,113)(23,42,54,29,114)(24,43,55,30,115), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,59,38,113)(14,60,39,114)(15,49,40,115)(16,50,41,116)(17,51,42,117)(18,52,43,118)(19,53,44,119)(20,54,45,120)(21,55,46,109)(22,56,47,110)(23,57,48,111)(24,58,37,112)(25,28,31,34)(26,29,32,35)(27,30,33,36)(61,86,77,98)(62,87,78,99)(63,88,79,100)(64,89,80,101)(65,90,81,102)(66,91,82,103)(67,92,83,104)(68,93,84,105)(69,94,73,106)(70,95,74,107)(71,96,75,108)(72,85,76,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,98)(23,97)(24,108)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(60,72)(73,111)(74,110)(75,109)(76,120)(77,119)(78,118)(79,117)(80,116)(81,115)(82,114)(83,113)(84,112), (1,81,108,96,65)(2,82,97,85,66)(3,83,98,86,67)(4,84,99,87,68)(5,73,100,88,69)(6,74,101,89,70)(7,75,102,90,71)(8,76,103,91,72)(9,77,104,92,61)(10,78,105,93,62)(11,79,106,94,63)(12,80,107,95,64)(13,44,56,31,116)(14,45,57,32,117)(15,46,58,33,118)(16,47,59,34,119)(17,48,60,35,120)(18,37,49,36,109)(19,38,50,25,110)(20,39,51,26,111)(21,40,52,27,112)(22,41,53,28,113)(23,42,54,29,114)(24,43,55,30,115), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,59,38,113)(14,60,39,114)(15,49,40,115)(16,50,41,116)(17,51,42,117)(18,52,43,118)(19,53,44,119)(20,54,45,120)(21,55,46,109)(22,56,47,110)(23,57,48,111)(24,58,37,112)(25,28,31,34)(26,29,32,35)(27,30,33,36)(61,86,77,98)(62,87,78,99)(63,88,79,100)(64,89,80,101)(65,90,81,102)(66,91,82,103)(67,92,83,104)(68,93,84,105)(69,94,73,106)(70,95,74,107)(71,96,75,108)(72,85,76,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,107),(14,106),(15,105),(16,104),(17,103),(18,102),(19,101),(20,100),(21,99),(22,98),(23,97),(24,108),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,96),(44,95),(45,94),(46,93),(47,92),(48,91),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(57,63),(58,62),(59,61),(60,72),(73,111),(74,110),(75,109),(76,120),(77,119),(78,118),(79,117),(80,116),(81,115),(82,114),(83,113),(84,112)], [(1,81,108,96,65),(2,82,97,85,66),(3,83,98,86,67),(4,84,99,87,68),(5,73,100,88,69),(6,74,101,89,70),(7,75,102,90,71),(8,76,103,91,72),(9,77,104,92,61),(10,78,105,93,62),(11,79,106,94,63),(12,80,107,95,64),(13,44,56,31,116),(14,45,57,32,117),(15,46,58,33,118),(16,47,59,34,119),(17,48,60,35,120),(18,37,49,36,109),(19,38,50,25,110),(20,39,51,26,111),(21,40,52,27,112),(22,41,53,28,113),(23,42,54,29,114),(24,43,55,30,115)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,59,38,113),(14,60,39,114),(15,49,40,115),(16,50,41,116),(17,51,42,117),(18,52,43,118),(19,53,44,119),(20,54,45,120),(21,55,46,109),(22,56,47,110),(23,57,48,111),(24,58,37,112),(25,28,31,34),(26,29,32,35),(27,30,33,36),(61,86,77,98),(62,87,78,99),(63,88,79,100),(64,89,80,101),(65,90,81,102),(66,91,82,103),(67,92,83,104),(68,93,84,105),(69,94,73,106),(70,95,74,107),(71,96,75,108),(72,85,76,97)]])

39 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B6C8A8B10A10B10C12A12B12C···12L 15  20  30 60A60B
order1222344444444566688101010121212···121520306060
size111012225510101010604210106060424242210···1088888

39 irreducible representations

dim1111112222222224448888
type+++++++++++++-+-
imageC1C2C2C2C4C4S3D4D4D6D12C4×S3C3⋊D4C4≀C2C424S3F5C2×F5C22⋊F5S3×F5D4⋊F5D6⋊F5D122F5
kernelD122F5C12×F5C12.F5D125D5C5×D12Dic30C4×F5C3×Dic5C6×D5C4×D5Dic5C20D10C15C5D12C12C6C4C3C2C1
# reps1111221111222481121112

Matrix representation of D122F5 in GL8(𝔽241)

64177000000
0177000000
0002400000
0012400000
0000240000
0000024000
0000002400
0000000240
,
17764000000
11364000000
0024000000
0024010000
000012423407
000001172347
000072341170
000070234124
,
10000000
01000000
00100000
00010000
0000000240
0000100240
0000010240
0000001240
,
240153000000
064000000
006400000
000640000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(241))| [64,0,0,0,0,0,0,0,177,177,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[177,113,0,0,0,0,0,0,64,64,0,0,0,0,0,0,0,0,240,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,124,0,7,7,0,0,0,0,234,117,234,0,0,0,0,0,0,234,117,234,0,0,0,0,7,7,0,124],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240],[240,0,0,0,0,0,0,0,153,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

D122F5 in GAP, Magma, Sage, TeX

D_{12}\rtimes_2F_5
% in TeX

G:=Group("D12:2F5");
// GroupNames label

G:=SmallGroup(480,232);
// by ID

G=gap.SmallGroup(480,232);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,346,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^9*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽