extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C60)⋊1C4 = C3×D10.D4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):1C4 | 480,279 |
(C2×C60)⋊2C4 = (C2×C60)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):2C4 | 480,304 |
(C2×C60)⋊3C4 = C2×C60⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | | (C2xC60):3C4 | 480,1064 |
(C2×C60)⋊4C4 = (C2×C12)⋊6F5 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):4C4 | 480,1065 |
(C2×C60)⋊5C4 = C3×D10.3Q8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | | (C2xC60):5C4 | 480,286 |
(C2×C60)⋊6C4 = D10.10D12 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | | (C2xC60):6C4 | 480,311 |
(C2×C60)⋊7C4 = C2×C4×C3⋊F5 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | | (C2xC60):7C4 | 480,1063 |
(C2×C60)⋊8C4 = C6×C4⋊F5 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | | (C2xC60):8C4 | 480,1051 |
(C2×C60)⋊9C4 = C3×D10.C23 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):9C4 | 480,1052 |
(C2×C60)⋊10C4 = F5×C2×C12 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | | (C2xC60):10C4 | 480,1050 |
(C2×C60)⋊11C4 = C3×C23⋊Dic5 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):11C4 | 480,112 |
(C2×C60)⋊12C4 = C5×C23.7D6 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):12C4 | 480,153 |
(C2×C60)⋊13C4 = C23.7D30 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):13C4 | 480,194 |
(C2×C60)⋊14C4 = C15×C23⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60):14C4 | 480,202 |
(C2×C60)⋊15C4 = C3×C10.10C42 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):15C4 | 480,109 |
(C2×C60)⋊16C4 = C5×C6.C42 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):16C4 | 480,150 |
(C2×C60)⋊17C4 = C30.29C42 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):17C4 | 480,191 |
(C2×C60)⋊18C4 = C15×C2.C42 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):18C4 | 480,198 |
(C2×C60)⋊19C4 = C2×C60⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):19C4 | 480,890 |
(C2×C60)⋊20C4 = C23.26D30 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60):20C4 | 480,891 |
(C2×C60)⋊21C4 = C2×C4×Dic15 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):21C4 | 480,887 |
(C2×C60)⋊22C4 = C6×C4⋊Dic5 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):22C4 | 480,718 |
(C2×C60)⋊23C4 = C3×C23.21D10 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60):23C4 | 480,719 |
(C2×C60)⋊24C4 = C10×C4⋊Dic3 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):24C4 | 480,804 |
(C2×C60)⋊25C4 = C5×C23.26D6 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60):25C4 | 480,805 |
(C2×C60)⋊26C4 = Dic5×C2×C12 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):26C4 | 480,715 |
(C2×C60)⋊27C4 = Dic3×C2×C20 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):27C4 | 480,801 |
(C2×C60)⋊28C4 = C4⋊C4×C30 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60):28C4 | 480,921 |
(C2×C60)⋊29C4 = C15×C42⋊C2 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60):29C4 | 480,922 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C60).1C4 = C3×Dic5.D4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).1C4 | 480,285 |
(C2×C60).2C4 = (C2×C60).C4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).2C4 | 480,310 |
(C2×C60).3C4 = C60⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).3C4 | 480,306 |
(C2×C60).4C4 = C2×C12.F5 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | | (C2xC60).4C4 | 480,1061 |
(C2×C60).5C4 = C60.C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).5C4 | 480,303 |
(C2×C60).6C4 = C60.59(C2×C4) | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60).6C4 | 480,1062 |
(C2×C60).7C4 = C3×C10.C42 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).7C4 | 480,282 |
(C2×C60).8C4 = C3×D10⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | | (C2xC60).8C4 | 480,283 |
(C2×C60).9C4 = C3×Dic5⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).9C4 | 480,284 |
(C2×C60).10C4 = C30.11C42 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).10C4 | 480,307 |
(C2×C60).11C4 = C30.7M4(2) | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | | (C2xC60).11C4 | 480,308 |
(C2×C60).12C4 = Dic5.13D12 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).12C4 | 480,309 |
(C2×C60).13C4 = C2×C15⋊C16 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).13C4 | 480,302 |
(C2×C60).14C4 = C4×C15⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).14C4 | 480,305 |
(C2×C60).15C4 = C2×C60.C4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | | (C2xC60).15C4 | 480,1060 |
(C2×C60).16C4 = C3×C20⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).16C4 | 480,281 |
(C2×C60).17C4 = C6×C4.F5 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | | (C2xC60).17C4 | 480,1048 |
(C2×C60).18C4 = C3×C20.C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).18C4 | 480,278 |
(C2×C60).19C4 = C3×D5⋊M4(2) | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 120 | 4 | (C2xC60).19C4 | 480,1049 |
(C2×C60).20C4 = C6×C5⋊C16 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).20C4 | 480,277 |
(C2×C60).21C4 = C12×C5⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 480 | | (C2xC60).21C4 | 480,280 |
(C2×C60).22C4 = C6×D5⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | | (C2xC60).22C4 | 480,1047 |
(C2×C60).23C4 = C3×C20.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).23C4 | 480,114 |
(C2×C60).24C4 = C5×C12.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).24C4 | 480,155 |
(C2×C60).25C4 = C60.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).25C4 | 480,196 |
(C2×C60).26C4 = C15×C4.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C60 | 240 | 4 | (C2xC60).26C4 | 480,204 |
(C2×C60).27C4 = C3×C42.D5 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).27C4 | 480,81 |
(C2×C60).28C4 = C3×C20.55D4 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).28C4 | 480,108 |
(C2×C60).29C4 = C5×C42.S3 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).29C4 | 480,122 |
(C2×C60).30C4 = C5×C12⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).30C4 | 480,123 |
(C2×C60).31C4 = C5×C12.55D4 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).31C4 | 480,149 |
(C2×C60).32C4 = C42.D15 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).32C4 | 480,163 |
(C2×C60).33C4 = C60⋊5C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).33C4 | 480,164 |
(C2×C60).34C4 = C60.212D4 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).34C4 | 480,190 |
(C2×C60).35C4 = C15×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).35C4 | 480,200 |
(C2×C60).36C4 = C15×C22⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).36C4 | 480,201 |
(C2×C60).37C4 = C60.7C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | 2 | (C2xC60).37C4 | 480,172 |
(C2×C60).38C4 = C2×C60.7C4 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).38C4 | 480,886 |
(C2×C60).39C4 = C4×C15⋊3C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).39C4 | 480,162 |
(C2×C60).40C4 = C2×C15⋊3C16 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).40C4 | 480,171 |
(C2×C60).41C4 = C22×C15⋊3C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).41C4 | 480,885 |
(C2×C60).42C4 = C3×C20⋊3C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).42C4 | 480,82 |
(C2×C60).43C4 = C3×C20.4C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | 2 | (C2xC60).43C4 | 480,90 |
(C2×C60).44C4 = C6×C4.Dic5 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).44C4 | 480,714 |
(C2×C60).45C4 = C5×C12.C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | 2 | (C2xC60).45C4 | 480,131 |
(C2×C60).46C4 = C10×C4.Dic3 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).46C4 | 480,800 |
(C2×C60).47C4 = C12×C5⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).47C4 | 480,80 |
(C2×C60).48C4 = C6×C5⋊2C16 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).48C4 | 480,89 |
(C2×C60).49C4 = C2×C6×C5⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).49C4 | 480,713 |
(C2×C60).50C4 = C20×C3⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).50C4 | 480,121 |
(C2×C60).51C4 = C10×C3⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).51C4 | 480,130 |
(C2×C60).52C4 = C2×C10×C3⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).52C4 | 480,799 |
(C2×C60).53C4 = C15×C4⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 480 | | (C2xC60).53C4 | 480,208 |
(C2×C60).54C4 = C15×M5(2) | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | 2 | (C2xC60).54C4 | 480,213 |
(C2×C60).55C4 = M4(2)×C30 | φ: C4/C2 → C2 ⊆ Aut C2×C60 | 240 | | (C2xC60).55C4 | 480,935 |