Extensions 1→N→G→Q→1 with N=C2xC60 and Q=C4

Direct product G=NxQ with N=C2xC60 and Q=C4
dρLabelID
C2xC4xC60480C2xC4xC60480,919

Semidirect products G=N:Q with N=C2xC60 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2xC60):1C4 = C3xD10.D4φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):1C4480,279
(C2xC60):2C4 = (C2xC60):C4φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):2C4480,304
(C2xC60):3C4 = C2xC60:C4φ: C4/C1C4 ⊆ Aut C2xC60120(C2xC60):3C4480,1064
(C2xC60):4C4 = (C2xC12):6F5φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):4C4480,1065
(C2xC60):5C4 = C3xD10.3Q8φ: C4/C1C4 ⊆ Aut C2xC60120(C2xC60):5C4480,286
(C2xC60):6C4 = D10.10D12φ: C4/C1C4 ⊆ Aut C2xC60120(C2xC60):6C4480,311
(C2xC60):7C4 = C2xC4xC3:F5φ: C4/C1C4 ⊆ Aut C2xC60120(C2xC60):7C4480,1063
(C2xC60):8C4 = C6xC4:F5φ: C4/C1C4 ⊆ Aut C2xC60120(C2xC60):8C4480,1051
(C2xC60):9C4 = C3xD10.C23φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):9C4480,1052
(C2xC60):10C4 = F5xC2xC12φ: C4/C1C4 ⊆ Aut C2xC60120(C2xC60):10C4480,1050
(C2xC60):11C4 = C3xC23:Dic5φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):11C4480,112
(C2xC60):12C4 = C5xC23.7D6φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):12C4480,153
(C2xC60):13C4 = C23.7D30φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):13C4480,194
(C2xC60):14C4 = C15xC23:C4φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60):14C4480,202
(C2xC60):15C4 = C3xC10.10C42φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):15C4480,109
(C2xC60):16C4 = C5xC6.C42φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):16C4480,150
(C2xC60):17C4 = C30.29C42φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):17C4480,191
(C2xC60):18C4 = C15xC2.C42φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):18C4480,198
(C2xC60):19C4 = C2xC60:5C4φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):19C4480,890
(C2xC60):20C4 = C23.26D30φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60):20C4480,891
(C2xC60):21C4 = C2xC4xDic15φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):21C4480,887
(C2xC60):22C4 = C6xC4:Dic5φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):22C4480,718
(C2xC60):23C4 = C3xC23.21D10φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60):23C4480,719
(C2xC60):24C4 = C10xC4:Dic3φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):24C4480,804
(C2xC60):25C4 = C5xC23.26D6φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60):25C4480,805
(C2xC60):26C4 = Dic5xC2xC12φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):26C4480,715
(C2xC60):27C4 = Dic3xC2xC20φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):27C4480,801
(C2xC60):28C4 = C4:C4xC30φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60):28C4480,921
(C2xC60):29C4 = C15xC42:C2φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60):29C4480,922

Non-split extensions G=N.Q with N=C2xC60 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2xC60).1C4 = C3xDic5.D4φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).1C4480,285
(C2xC60).2C4 = (C2xC60).C4φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).2C4480,310
(C2xC60).3C4 = C60:C8φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).3C4480,306
(C2xC60).4C4 = C2xC12.F5φ: C4/C1C4 ⊆ Aut C2xC60240(C2xC60).4C4480,1061
(C2xC60).5C4 = C60.C8φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).5C4480,303
(C2xC60).6C4 = C60.59(C2xC4)φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60).6C4480,1062
(C2xC60).7C4 = C3xC10.C42φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).7C4480,282
(C2xC60).8C4 = C3xD10:C8φ: C4/C1C4 ⊆ Aut C2xC60240(C2xC60).8C4480,283
(C2xC60).9C4 = C3xDic5:C8φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).9C4480,284
(C2xC60).10C4 = C30.11C42φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).10C4480,307
(C2xC60).11C4 = C30.7M4(2)φ: C4/C1C4 ⊆ Aut C2xC60240(C2xC60).11C4480,308
(C2xC60).12C4 = Dic5.13D12φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).12C4480,309
(C2xC60).13C4 = C2xC15:C16φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).13C4480,302
(C2xC60).14C4 = C4xC15:C8φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).14C4480,305
(C2xC60).15C4 = C2xC60.C4φ: C4/C1C4 ⊆ Aut C2xC60240(C2xC60).15C4480,1060
(C2xC60).16C4 = C3xC20:C8φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).16C4480,281
(C2xC60).17C4 = C6xC4.F5φ: C4/C1C4 ⊆ Aut C2xC60240(C2xC60).17C4480,1048
(C2xC60).18C4 = C3xC20.C8φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).18C4480,278
(C2xC60).19C4 = C3xD5:M4(2)φ: C4/C1C4 ⊆ Aut C2xC601204(C2xC60).19C4480,1049
(C2xC60).20C4 = C6xC5:C16φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).20C4480,277
(C2xC60).21C4 = C12xC5:C8φ: C4/C1C4 ⊆ Aut C2xC60480(C2xC60).21C4480,280
(C2xC60).22C4 = C6xD5:C8φ: C4/C1C4 ⊆ Aut C2xC60240(C2xC60).22C4480,1047
(C2xC60).23C4 = C3xC20.10D4φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).23C4480,114
(C2xC60).24C4 = C5xC12.10D4φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).24C4480,155
(C2xC60).25C4 = C60.10D4φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).25C4480,196
(C2xC60).26C4 = C15xC4.10D4φ: C4/C1C4 ⊆ Aut C2xC602404(C2xC60).26C4480,204
(C2xC60).27C4 = C3xC42.D5φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).27C4480,81
(C2xC60).28C4 = C3xC20.55D4φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).28C4480,108
(C2xC60).29C4 = C5xC42.S3φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).29C4480,122
(C2xC60).30C4 = C5xC12:C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).30C4480,123
(C2xC60).31C4 = C5xC12.55D4φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).31C4480,149
(C2xC60).32C4 = C42.D15φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).32C4480,163
(C2xC60).33C4 = C60:5C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).33C4480,164
(C2xC60).34C4 = C60.212D4φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).34C4480,190
(C2xC60).35C4 = C15xC8:C4φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).35C4480,200
(C2xC60).36C4 = C15xC22:C8φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).36C4480,201
(C2xC60).37C4 = C60.7C8φ: C4/C2C2 ⊆ Aut C2xC602402(C2xC60).37C4480,172
(C2xC60).38C4 = C2xC60.7C4φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).38C4480,886
(C2xC60).39C4 = C4xC15:3C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).39C4480,162
(C2xC60).40C4 = C2xC15:3C16φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).40C4480,171
(C2xC60).41C4 = C22xC15:3C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).41C4480,885
(C2xC60).42C4 = C3xC20:3C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).42C4480,82
(C2xC60).43C4 = C3xC20.4C8φ: C4/C2C2 ⊆ Aut C2xC602402(C2xC60).43C4480,90
(C2xC60).44C4 = C6xC4.Dic5φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).44C4480,714
(C2xC60).45C4 = C5xC12.C8φ: C4/C2C2 ⊆ Aut C2xC602402(C2xC60).45C4480,131
(C2xC60).46C4 = C10xC4.Dic3φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).46C4480,800
(C2xC60).47C4 = C12xC5:2C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).47C4480,80
(C2xC60).48C4 = C6xC5:2C16φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).48C4480,89
(C2xC60).49C4 = C2xC6xC5:2C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).49C4480,713
(C2xC60).50C4 = C20xC3:C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).50C4480,121
(C2xC60).51C4 = C10xC3:C16φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).51C4480,130
(C2xC60).52C4 = C2xC10xC3:C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).52C4480,799
(C2xC60).53C4 = C15xC4:C8φ: C4/C2C2 ⊆ Aut C2xC60480(C2xC60).53C4480,208
(C2xC60).54C4 = C15xM5(2)φ: C4/C2C2 ⊆ Aut C2xC602402(C2xC60).54C4480,213
(C2xC60).55C4 = M4(2)xC30φ: C4/C2C2 ⊆ Aut C2xC60240(C2xC60).55C4480,935

׿
x
:
Z
F
o
wr
Q
<