Copied to
clipboard

G = (C2×C60)⋊C4order 480 = 25·3·5

2nd semidirect product of C2×C60 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C60)⋊2C4, (C2×C12)⋊2F5, C153(C23⋊C4), (C2×D20).2S3, (C6×D5).32D4, (C2×C20)⋊1Dic3, (C6×D20).12C2, C32(D10.D4), D10.5(C3⋊D4), (C22×D5)⋊4Dic3, (C22×D5).36D6, C51(C23.7D6), C6.16(C22⋊F5), D10.D65C2, C30.16(C22⋊C4), C10.1(C6.D4), C2.4(D10.D6), (C2×C4)⋊(C3⋊F5), (D5×C2×C6)⋊3C4, C22.2(C2×C3⋊F5), (C2×C6).32(C2×F5), (C2×C30).26(C2×C4), (D5×C2×C6).86C22, (C2×C10).2(C2×Dic3), SmallGroup(480,304)

Series: Derived Chief Lower central Upper central

C1C2×C30 — (C2×C60)⋊C4
C1C5C15C30C6×D5D5×C2×C6D10.D6 — (C2×C60)⋊C4
C15C30C2×C30 — (C2×C60)⋊C4
C1C2C22C2×C4

Generators and relations for (C2×C60)⋊C4
 G = < a,b,c | a2=b60=c4=1, ab=ba, cac-1=ab30, cbc-1=ab47 >

Subgroups: 716 in 104 conjugacy classes, 29 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C20, F5, D10, D10, C2×C10, C2×Dic3, C2×C12, C3×D4, C22×C6, C3×D5, C30, C30, C23⋊C4, D20, C2×C20, C2×F5, C22×D5, C6.D4, C6×D4, C60, C3⋊F5, C6×D5, C6×D5, C2×C30, C22⋊F5, C2×D20, C23.7D6, C3×D20, C2×C60, C2×C3⋊F5, D5×C2×C6, D10.D4, D10.D6, C6×D20, (C2×C60)⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, F5, C2×Dic3, C3⋊D4, C23⋊C4, C2×F5, C6.D4, C3⋊F5, C22⋊F5, C23.7D6, C2×C3⋊F5, D10.D4, D10.D6, (C2×C60)⋊C4

Smallest permutation representation of (C2×C60)⋊C4
On 120 points
Generators in S120
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(2 114 20 108)(3 47 39 35)(4 100 58 82)(5 33 17 9)(6 86 36 116)(7 19 55 43)(8 72 14 90)(10 118 52 64)(11 51)(12 104 30 98)(13 37 49 25)(15 23 27 59)(16 76 46 106)(18 62 24 80)(21 41)(22 94 40 88)(26 66 56 96)(28 112 34 70)(29 45 53 57)(32 84 50 78)(38 102 44 120)(42 74 60 68)(48 92 54 110)(61 91)(63 77 99 65)(67 109 115 73)(69 95 93 107)(71 81)(75 113 87 89)(79 85 103 97)(83 117 119 105)(101 111)

G:=sub<Sym(120)| (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,114,20,108)(3,47,39,35)(4,100,58,82)(5,33,17,9)(6,86,36,116)(7,19,55,43)(8,72,14,90)(10,118,52,64)(11,51)(12,104,30,98)(13,37,49,25)(15,23,27,59)(16,76,46,106)(18,62,24,80)(21,41)(22,94,40,88)(26,66,56,96)(28,112,34,70)(29,45,53,57)(32,84,50,78)(38,102,44,120)(42,74,60,68)(48,92,54,110)(61,91)(63,77,99,65)(67,109,115,73)(69,95,93,107)(71,81)(75,113,87,89)(79,85,103,97)(83,117,119,105)(101,111)>;

G:=Group( (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (2,114,20,108)(3,47,39,35)(4,100,58,82)(5,33,17,9)(6,86,36,116)(7,19,55,43)(8,72,14,90)(10,118,52,64)(11,51)(12,104,30,98)(13,37,49,25)(15,23,27,59)(16,76,46,106)(18,62,24,80)(21,41)(22,94,40,88)(26,66,56,96)(28,112,34,70)(29,45,53,57)(32,84,50,78)(38,102,44,120)(42,74,60,68)(48,92,54,110)(61,91)(63,77,99,65)(67,109,115,73)(69,95,93,107)(71,81)(75,113,87,89)(79,85,103,97)(83,117,119,105)(101,111) );

G=PermutationGroup([[(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(2,114,20,108),(3,47,39,35),(4,100,58,82),(5,33,17,9),(6,86,36,116),(7,19,55,43),(8,72,14,90),(10,118,52,64),(11,51),(12,104,30,98),(13,37,49,25),(15,23,27,59),(16,76,46,106),(18,62,24,80),(21,41),(22,94,40,88),(26,66,56,96),(28,112,34,70),(29,45,53,57),(32,84,50,78),(38,102,44,120),(42,74,60,68),(48,92,54,110),(61,91),(63,77,99,65),(67,109,115,73),(69,95,93,107),(71,81),(75,113,87,89),(79,85,103,97),(83,117,119,105),(101,111)]])

45 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E 5 6A6B6C6D6E6F6G10A10B10C12A12B15A15B20A20B20C20D30A···30F60A···60H
order12222234444456666666101010121215152020202030···3060···60
size1121010202460606060422220202020444444444444···44···4

45 irreducible representations

dim111112222224444444444
type+++++--++++++
imageC1C2C2C4C4S3D4Dic3Dic3D6C3⋊D4F5C23⋊C4C2×F5C3⋊F5C22⋊F5C23.7D6C2×C3⋊F5D10.D4D10.D6(C2×C60)⋊C4
kernel(C2×C60)⋊C4D10.D6C6×D20C2×C60D5×C2×C6C2×D20C6×D5C2×C20C22×D5C22×D5D10C2×C12C15C2×C6C2×C4C6C5C22C3C2C1
# reps121221211141112222448

Matrix representation of (C2×C60)⋊C4 in GL8(𝔽61)

5243000000
189000000
0052430000
001890000
00001000
00000100
00000010
00000001
,
00010000
0060600000
060000000
11000000
000066034
000027333327
000034066
00005528550
,
10000000
6060000000
009180000
009520000
000063460
00005555028
00002805555
000006346

G:=sub<GL(8,GF(61))| [52,18,0,0,0,0,0,0,43,9,0,0,0,0,0,0,0,0,52,18,0,0,0,0,0,0,43,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,0,0,6,27,34,55,0,0,0,0,6,33,0,28,0,0,0,0,0,33,6,55,0,0,0,0,34,27,6,0],[1,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,9,9,0,0,0,0,0,0,18,52,0,0,0,0,0,0,0,0,6,55,28,0,0,0,0,0,34,55,0,6,0,0,0,0,6,0,55,34,0,0,0,0,0,28,55,6] >;

(C2×C60)⋊C4 in GAP, Magma, Sage, TeX

(C_2\times C_{60})\rtimes C_4
% in TeX

G:=Group("(C2xC60):C4");
// GroupNames label

G:=SmallGroup(480,304);
// by ID

G=gap.SmallGroup(480,304);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,120,219,675,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c|a^2=b^60=c^4=1,a*b=b*a,c*a*c^-1=a*b^30,c*b*c^-1=a*b^47>;
// generators/relations

׿
×
𝔽