Extensions 1→N→G→Q→1 with N=C3 and Q=D8⋊D5

Direct product G=N×Q with N=C3 and Q=D8⋊D5
dρLabelID
C3×D8⋊D51204C3xD8:D5480,704

Semidirect products G=N:Q with N=C3 and Q=D8⋊D5
extensionφ:Q→Aut NdρLabelID
C31(D8⋊D5) = D24⋊D5φ: D8⋊D5/C8⋊D5C2 ⊆ Aut C31204C3:1(D8:D5)480,326
C32(D8⋊D5) = D246D5φ: D8⋊D5/C40⋊C2C2 ⊆ Aut C31204C3:2(D8:D5)480,333
C33(D8⋊D5) = D30.8D4φ: D8⋊D5/D4⋊D5C2 ⊆ Aut C31208-C3:3(D8:D5)480,558
C34(D8⋊D5) = D125D10φ: D8⋊D5/D4.D5C2 ⊆ Aut C31208+C3:4(D8:D5)480,576
C35(D8⋊D5) = D8⋊D15φ: D8⋊D5/C5×D8C2 ⊆ Aut C31204C3:5(D8:D5)480,876
C36(D8⋊D5) = D1210D10φ: D8⋊D5/D4×D5C2 ⊆ Aut C31208-C3:6(D8:D5)480,565
C37(D8⋊D5) = Dic103D6φ: D8⋊D5/D42D5C2 ⊆ Aut C31208+C3:7(D8:D5)480,554


׿
×
𝔽