metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊2D5, C40⋊2C2, C5⋊1SD16, C2.3D20, C10.1D4, C4.8D10, D20.1C2, Dic10⋊1C2, C20.8C22, SmallGroup(80,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C40⋊C2
G = < a,b | a40=b2=1, bab=a19 >
Character table of C40⋊C2
class | 1 | 2A | 2B | 4A | 4B | 5A | 5B | 8A | 8B | 10A | 10B | 20A | 20B | 20C | 20D | 40A | 40B | 40C | 40D | 40E | 40F | 40G | 40H | |
size | 1 | 1 | 20 | 2 | 20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | 2 | 0 | -2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ11 | 2 | 2 | 0 | -2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ12 | 2 | 2 | 0 | -2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ13 | 2 | 2 | 0 | -2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ14 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√-2 | √-2 | -2 | -2 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √-2 | -√-2 | -2 | -2 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -√-2 | √-2 | 1+√5/2 | 1-√5/2 | ζ86ζ54-ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ82ζ53-ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ87ζ5+ζ85ζ54 | ζ87ζ54+ζ85ζ5 | ζ83ζ54+ζ8ζ5 | ζ83ζ53+ζ8ζ52 | ζ83ζ52+ζ8ζ53 | ζ83ζ5+ζ8ζ54 | ζ87ζ53+ζ85ζ52 | ζ87ζ52+ζ85ζ53 | complex faithful |
ρ17 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -√-2 | √-2 | 1+√5/2 | 1-√5/2 | -ζ86ζ54+ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ82ζ53+ζ82ζ52 | ζ86ζ54-ζ86ζ5 | ζ87ζ54+ζ85ζ5 | ζ87ζ5+ζ85ζ54 | ζ83ζ5+ζ8ζ54 | ζ83ζ52+ζ8ζ53 | ζ83ζ53+ζ8ζ52 | ζ83ζ54+ζ8ζ5 | ζ87ζ52+ζ85ζ53 | ζ87ζ53+ζ85ζ52 | complex faithful |
ρ18 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | √-2 | -√-2 | 1-√5/2 | 1+√5/2 | ζ82ζ53-ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ86ζ54+ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ83ζ53+ζ8ζ52 | ζ83ζ52+ζ8ζ53 | ζ87ζ52+ζ85ζ53 | ζ87ζ54+ζ85ζ5 | ζ87ζ5+ζ85ζ54 | ζ87ζ53+ζ85ζ52 | ζ83ζ54+ζ8ζ5 | ζ83ζ5+ζ8ζ54 | complex faithful |
ρ19 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -√-2 | √-2 | 1-√5/2 | 1+√5/2 | -ζ82ζ53+ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ86ζ54-ζ86ζ5 | ζ82ζ53-ζ82ζ52 | ζ87ζ52+ζ85ζ53 | ζ87ζ53+ζ85ζ52 | ζ83ζ53+ζ8ζ52 | ζ83ζ5+ζ8ζ54 | ζ83ζ54+ζ8ζ5 | ζ83ζ52+ζ8ζ53 | ζ87ζ5+ζ85ζ54 | ζ87ζ54+ζ85ζ5 | complex faithful |
ρ20 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | √-2 | -√-2 | 1+√5/2 | 1-√5/2 | ζ86ζ54-ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ82ζ53-ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ83ζ5+ζ8ζ54 | ζ83ζ54+ζ8ζ5 | ζ87ζ54+ζ85ζ5 | ζ87ζ53+ζ85ζ52 | ζ87ζ52+ζ85ζ53 | ζ87ζ5+ζ85ζ54 | ζ83ζ53+ζ8ζ52 | ζ83ζ52+ζ8ζ53 | complex faithful |
ρ21 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -√-2 | √-2 | 1-√5/2 | 1+√5/2 | ζ82ζ53-ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ86ζ54+ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ87ζ53+ζ85ζ52 | ζ87ζ52+ζ85ζ53 | ζ83ζ52+ζ8ζ53 | ζ83ζ54+ζ8ζ5 | ζ83ζ5+ζ8ζ54 | ζ83ζ53+ζ8ζ52 | ζ87ζ54+ζ85ζ5 | ζ87ζ5+ζ85ζ54 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | √-2 | -√-2 | 1-√5/2 | 1+√5/2 | -ζ82ζ53+ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ86ζ54-ζ86ζ5 | ζ82ζ53-ζ82ζ52 | ζ83ζ52+ζ8ζ53 | ζ83ζ53+ζ8ζ52 | ζ87ζ53+ζ85ζ52 | ζ87ζ5+ζ85ζ54 | ζ87ζ54+ζ85ζ5 | ζ87ζ52+ζ85ζ53 | ζ83ζ5+ζ8ζ54 | ζ83ζ54+ζ8ζ5 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | √-2 | -√-2 | 1+√5/2 | 1-√5/2 | -ζ86ζ54+ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ82ζ53+ζ82ζ52 | ζ86ζ54-ζ86ζ5 | ζ83ζ54+ζ8ζ5 | ζ83ζ5+ζ8ζ54 | ζ87ζ5+ζ85ζ54 | ζ87ζ52+ζ85ζ53 | ζ87ζ53+ζ85ζ52 | ζ87ζ54+ζ85ζ5 | ζ83ζ52+ζ8ζ53 | ζ83ζ53+ζ8ζ52 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32)]])
C40⋊C2 is a maximal subgroup of
D40⋊7C2 C8⋊D10 C8.D10 D8⋊D5 D5×SD16 SD16⋊3D5 Q16⋊D5 C6.D20 C15⋊SD16 C24⋊D5 C200⋊C2 C52⋊3SD16 C52⋊4SD16 C40⋊2D5
C40⋊C2 is a maximal quotient of
C20.44D4 C40⋊6C4 D20⋊5C4 C6.D20 C15⋊SD16 C24⋊D5 C200⋊C2 C52⋊3SD16 C52⋊4SD16 C40⋊2D5
Matrix representation of C40⋊C2 ►in GL2(𝔽19) generated by
14 | 10 |
10 | 3 |
14 | 1 |
14 | 5 |
G:=sub<GL(2,GF(19))| [14,10,10,3],[14,14,1,5] >;
C40⋊C2 in GAP, Magma, Sage, TeX
C_{40}\rtimes C_2
% in TeX
G:=Group("C40:C2");
// GroupNames label
G:=SmallGroup(80,6);
// by ID
G=gap.SmallGroup(80,6);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,61,26,182,42,1604]);
// Polycyclic
G:=Group<a,b|a^40=b^2=1,b*a*b=a^19>;
// generators/relations
Export
Subgroup lattice of C40⋊C2 in TeX
Character table of C40⋊C2 in TeX