Extensions 1→N→G→Q→1 with N=S3×D4 and Q=D5

Direct product G=N×Q with N=S3×D4 and Q=D5
dρLabelID
S3×D4×D5608+S3xD4xD5480,1097

Semidirect products G=N:Q with N=S3×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×D4)⋊1D5 = S3×D4⋊D5φ: D5/C5C2 ⊆ Out S3×D41208+(S3xD4):1D5480,555
(S3×D4)⋊2D5 = D2010D6φ: D5/C5C2 ⊆ Out S3×D41208-(S3xD4):2D5480,570
(S3×D4)⋊3D5 = D12.9D10φ: D5/C5C2 ⊆ Out S3×D41208+(S3xD4):3D5480,572
(S3×D4)⋊4D5 = D2013D6φ: D5/C5C2 ⊆ Out S3×D41208-(S3xD4):4D5480,1101
(S3×D4)⋊5D5 = D1214D10φ: D5/C5C2 ⊆ Out S3×D41208+(S3xD4):5D5480,1103
(S3×D4)⋊6D5 = S3×D42D5φ: trivial image1208-(S3xD4):6D5480,1099

Non-split extensions G=N.Q with N=S3×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×D4).D5 = S3×D4.D5φ: D5/C5C2 ⊆ Out S3×D41208-(S3xD4).D5480,561

׿
×
𝔽