Extensions 1→N→G→Q→1 with N=C2×C5⋊D12 and Q=C2

Direct product G=N×Q with N=C2×C5⋊D12 and Q=C2
dρLabelID
C22×C5⋊D12240C2^2xC5:D12480,1120

Semidirect products G=N:Q with N=C2×C5⋊D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C5⋊D12)⋊1C2 = Dic5⋊D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):1C2480,492
(C2×C5⋊D12)⋊2C2 = D30⋊D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):2C2480,496
(C2×C5⋊D12)⋊3C2 = D10⋊D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):3C2480,524
(C2×C5⋊D12)⋊4C2 = C20⋊D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):4C2480,527
(C2×C5⋊D12)⋊5C2 = D6⋊D20φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):5C2480,530
(C2×C5⋊D12)⋊6C2 = C606D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):6C2480,536
(C2×C5⋊D12)⋊7C2 = D3012D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):7C2480,537
(C2×C5⋊D12)⋊8C2 = C202D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):8C2480,542
(C2×C5⋊D12)⋊9C2 = D304D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):9C2480,551
(C2×C5⋊D12)⋊10C2 = D305D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):10C2480,552
(C2×C5⋊D12)⋊11C2 = D307D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):11C2480,633
(C2×C5⋊D12)⋊12C2 = Dic154D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):12C2480,634
(C2×C5⋊D12)⋊13C2 = (C2×C10)⋊4D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):13C2480,642
(C2×C5⋊D12)⋊14C2 = Dic155D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):14C2480,643
(C2×C5⋊D12)⋊15C2 = (C2×C10)⋊11D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):15C2480,646
(C2×C5⋊D12)⋊16C2 = D3019D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):16C2480,649
(C2×C5⋊D12)⋊17C2 = C2×D12⋊D5φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):17C2480,1079
(C2×C5⋊D12)⋊18C2 = C2×D60⋊C2φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):18C2480,1081
(C2×C5⋊D12)⋊19C2 = C2×D5×D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):19C2480,1087
(C2×C5⋊D12)⋊20C2 = D1214D10φ: C2/C1C2 ⊆ Out C2×C5⋊D121208+(C2xC5:D12):20C2480,1103
(C2×C5⋊D12)⋊21C2 = C2×Dic3.D10φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12):21C2480,1116
(C2×C5⋊D12)⋊22C2 = C2×S3×C5⋊D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):22C2480,1123
(C2×C5⋊D12)⋊23C2 = C2×D10⋊D6φ: C2/C1C2 ⊆ Out C2×C5⋊D12120(C2xC5:D12):23C2480,1124
(C2×C5⋊D12)⋊24C2 = C2×D6.D10φ: trivial image240(C2xC5:D12):24C2480,1083

Non-split extensions G=N.Q with N=C2×C5⋊D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C5⋊D12).1C2 = (C2×C20).D6φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).1C2480,402
(C2×C5⋊D12).2C2 = Dic5.8D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).2C2480,426
(C2×C5⋊D12).3C2 = D6⋊Dic5⋊C2φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).3C2480,427
(C2×C5⋊D12).4C2 = D30.35D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).4C2480,431
(C2×C5⋊D12).5C2 = Dic54D12φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).5C2480,481
(C2×C5⋊D12).6C2 = Dic1514D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).6C2480,482
(C2×C5⋊D12).7C2 = D6.D20φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).7C2480,503
(C2×C5⋊D12).8C2 = D30.7D4φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).8C2480,514
(C2×C5⋊D12).9C2 = C1522(C4×D4)φ: C2/C1C2 ⊆ Out C2×C5⋊D12240(C2xC5:D12).9C2480,522
(C2×C5⋊D12).10C2 = Dic5.D12φ: C2/C1C2 ⊆ Out C2×C5⋊D121208+(C2xC5:D12).10C2480,250
(C2×C5⋊D12).11C2 = C4×C5⋊D12φ: trivial image240(C2xC5:D12).11C2480,521

׿
×
𝔽