Copied to
clipboard

G = Dic5.D12order 480 = 25·3·5

3rd non-split extension by Dic5 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic5.3D12, C15⋊(C4.D4), (C22×S3).F5, C5⋊(C12.46D4), C22.F51S3, C31(C23.F5), C22.5(S3×F5), C2.14(D6⋊F5), C10.14(D6⋊C4), C158M4(2)⋊1C2, (C2×Dic5).71D6, (C3×Dic5).32D4, (C22×D15).4C4, C6.14(C22⋊F5), C30.14(C22⋊C4), Dic5.3(C3⋊D4), (C6×Dic5).138C22, (S3×C2×C10).3C4, (C2×C6).3(C2×F5), (C2×C30).8(C2×C4), (C2×C10).10(C4×S3), (C3×C22.F5)⋊1C2, (C2×C5⋊D12).10C2, SmallGroup(480,250)

Series: Derived Chief Lower central Upper central

C1C2×C30 — Dic5.D12
C1C5C15C30C3×Dic5C6×Dic5C3×C22.F5 — Dic5.D12
C15C30C2×C30 — Dic5.D12
C1C2C22

Generators and relations for Dic5.D12
 G = < a,b,c,d | a10=1, b2=c12=a5, d2=b, bab-1=a-1, cac-1=dad-1=a3, cbc-1=a5b, bd=db, dcd-1=a5bc11 >

Subgroups: 660 in 92 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, D4, C23, D5, C10, C10, C12, D6, C2×C6, C15, M4(2), C2×D4, Dic5, D10, C2×C10, C2×C10, C3⋊C8, C24, D12, C2×C12, C22×S3, C22×S3, C5×S3, D15, C30, C30, C4.D4, C5⋊C8, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C4.Dic3, C3×M4(2), C2×D12, C3×Dic5, S3×C10, D30, C2×C30, C22.F5, C22.F5, C2×C5⋊D4, C12.46D4, C3×C5⋊C8, C15⋊C8, C5⋊D12, C6×Dic5, S3×C2×C10, C22×D15, C23.F5, C3×C22.F5, C158M4(2), C2×C5⋊D12, Dic5.D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, F5, C4×S3, D12, C3⋊D4, C4.D4, C2×F5, D6⋊C4, C22⋊F5, C12.46D4, S3×F5, C23.F5, D6⋊F5, Dic5.D12

Smallest permutation representation of Dic5.D12
On 120 points
Generators in S120
(1 98 58 32 75 13 110 70 44 87)(2 33 111 88 59 14 45 99 76 71)(3 89 46 72 112 15 77 34 60 100)(4 49 78 101 47 16 61 90 113 35)(5 102 62 36 79 17 114 50 48 91)(6 37 115 92 63 18 25 103 80 51)(7 93 26 52 116 19 81 38 64 104)(8 53 82 105 27 20 65 94 117 39)(9 106 66 40 83 21 118 54 28 95)(10 41 119 96 67 22 29 107 84 55)(11 73 30 56 120 23 85 42 68 108)(12 57 86 109 31 24 69 74 97 43)
(1 19 13 7)(2 8 14 20)(3 21 15 9)(4 10 16 22)(5 23 17 11)(6 12 18 24)(25 31 37 43)(26 44 38 32)(27 33 39 45)(28 46 40 34)(29 35 41 47)(30 48 42 36)(49 55 61 67)(50 68 62 56)(51 57 63 69)(52 70 64 58)(53 59 65 71)(54 72 66 60)(73 91 85 79)(74 80 86 92)(75 93 87 81)(76 82 88 94)(77 95 89 83)(78 84 90 96)(97 103 109 115)(98 116 110 104)(99 105 111 117)(100 118 112 106)(101 107 113 119)(102 120 114 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 6 19 12 13 18 7 24)(2 23 8 17 14 11 20 5)(3 4 21 10 15 16 9 22)(25 38 31 32 37 26 43 44)(27 36 33 30 39 48 45 42)(28 41 46 47 40 29 34 35)(49 66 55 60 61 54 67 72)(50 71 68 53 62 59 56 65)(51 64 57 58 63 52 69 70)(73 82 91 88 85 94 79 76)(74 75 80 93 86 87 92 81)(77 78 95 84 89 90 83 96)(97 98 103 116 109 110 115 104)(99 120 105 114 111 108 117 102)(100 101 118 107 112 113 106 119)

G:=sub<Sym(120)| (1,98,58,32,75,13,110,70,44,87)(2,33,111,88,59,14,45,99,76,71)(3,89,46,72,112,15,77,34,60,100)(4,49,78,101,47,16,61,90,113,35)(5,102,62,36,79,17,114,50,48,91)(6,37,115,92,63,18,25,103,80,51)(7,93,26,52,116,19,81,38,64,104)(8,53,82,105,27,20,65,94,117,39)(9,106,66,40,83,21,118,54,28,95)(10,41,119,96,67,22,29,107,84,55)(11,73,30,56,120,23,85,42,68,108)(12,57,86,109,31,24,69,74,97,43), (1,19,13,7)(2,8,14,20)(3,21,15,9)(4,10,16,22)(5,23,17,11)(6,12,18,24)(25,31,37,43)(26,44,38,32)(27,33,39,45)(28,46,40,34)(29,35,41,47)(30,48,42,36)(49,55,61,67)(50,68,62,56)(51,57,63,69)(52,70,64,58)(53,59,65,71)(54,72,66,60)(73,91,85,79)(74,80,86,92)(75,93,87,81)(76,82,88,94)(77,95,89,83)(78,84,90,96)(97,103,109,115)(98,116,110,104)(99,105,111,117)(100,118,112,106)(101,107,113,119)(102,120,114,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,6,19,12,13,18,7,24)(2,23,8,17,14,11,20,5)(3,4,21,10,15,16,9,22)(25,38,31,32,37,26,43,44)(27,36,33,30,39,48,45,42)(28,41,46,47,40,29,34,35)(49,66,55,60,61,54,67,72)(50,71,68,53,62,59,56,65)(51,64,57,58,63,52,69,70)(73,82,91,88,85,94,79,76)(74,75,80,93,86,87,92,81)(77,78,95,84,89,90,83,96)(97,98,103,116,109,110,115,104)(99,120,105,114,111,108,117,102)(100,101,118,107,112,113,106,119)>;

G:=Group( (1,98,58,32,75,13,110,70,44,87)(2,33,111,88,59,14,45,99,76,71)(3,89,46,72,112,15,77,34,60,100)(4,49,78,101,47,16,61,90,113,35)(5,102,62,36,79,17,114,50,48,91)(6,37,115,92,63,18,25,103,80,51)(7,93,26,52,116,19,81,38,64,104)(8,53,82,105,27,20,65,94,117,39)(9,106,66,40,83,21,118,54,28,95)(10,41,119,96,67,22,29,107,84,55)(11,73,30,56,120,23,85,42,68,108)(12,57,86,109,31,24,69,74,97,43), (1,19,13,7)(2,8,14,20)(3,21,15,9)(4,10,16,22)(5,23,17,11)(6,12,18,24)(25,31,37,43)(26,44,38,32)(27,33,39,45)(28,46,40,34)(29,35,41,47)(30,48,42,36)(49,55,61,67)(50,68,62,56)(51,57,63,69)(52,70,64,58)(53,59,65,71)(54,72,66,60)(73,91,85,79)(74,80,86,92)(75,93,87,81)(76,82,88,94)(77,95,89,83)(78,84,90,96)(97,103,109,115)(98,116,110,104)(99,105,111,117)(100,118,112,106)(101,107,113,119)(102,120,114,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,6,19,12,13,18,7,24)(2,23,8,17,14,11,20,5)(3,4,21,10,15,16,9,22)(25,38,31,32,37,26,43,44)(27,36,33,30,39,48,45,42)(28,41,46,47,40,29,34,35)(49,66,55,60,61,54,67,72)(50,71,68,53,62,59,56,65)(51,64,57,58,63,52,69,70)(73,82,91,88,85,94,79,76)(74,75,80,93,86,87,92,81)(77,78,95,84,89,90,83,96)(97,98,103,116,109,110,115,104)(99,120,105,114,111,108,117,102)(100,101,118,107,112,113,106,119) );

G=PermutationGroup([[(1,98,58,32,75,13,110,70,44,87),(2,33,111,88,59,14,45,99,76,71),(3,89,46,72,112,15,77,34,60,100),(4,49,78,101,47,16,61,90,113,35),(5,102,62,36,79,17,114,50,48,91),(6,37,115,92,63,18,25,103,80,51),(7,93,26,52,116,19,81,38,64,104),(8,53,82,105,27,20,65,94,117,39),(9,106,66,40,83,21,118,54,28,95),(10,41,119,96,67,22,29,107,84,55),(11,73,30,56,120,23,85,42,68,108),(12,57,86,109,31,24,69,74,97,43)], [(1,19,13,7),(2,8,14,20),(3,21,15,9),(4,10,16,22),(5,23,17,11),(6,12,18,24),(25,31,37,43),(26,44,38,32),(27,33,39,45),(28,46,40,34),(29,35,41,47),(30,48,42,36),(49,55,61,67),(50,68,62,56),(51,57,63,69),(52,70,64,58),(53,59,65,71),(54,72,66,60),(73,91,85,79),(74,80,86,92),(75,93,87,81),(76,82,88,94),(77,95,89,83),(78,84,90,96),(97,103,109,115),(98,116,110,104),(99,105,111,117),(100,118,112,106),(101,107,113,119),(102,120,114,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,6,19,12,13,18,7,24),(2,23,8,17,14,11,20,5),(3,4,21,10,15,16,9,22),(25,38,31,32,37,26,43,44),(27,36,33,30,39,48,45,42),(28,41,46,47,40,29,34,35),(49,66,55,60,61,54,67,72),(50,71,68,53,62,59,56,65),(51,64,57,58,63,52,69,70),(73,82,91,88,85,94,79,76),(74,75,80,93,86,87,92,81),(77,78,95,84,89,90,83,96),(97,98,103,116,109,110,115,104),(99,120,105,114,111,108,117,102),(100,101,118,107,112,113,106,119)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B 5 6A6B8A8B8C8D10A10B10C10D10E10F10G12A12B12C 15 24A24B24C24D30A30B30C
order122223445668888101010101010101212121524242424303030
size1121260210104242020606044412121212101020820202020888

33 irreducible representations

dim111111222222444444888
type++++++++++++++++
imageC1C2C2C2C4C4S3D4D6D12C3⋊D4C4×S3F5C4.D4C2×F5C22⋊F5C12.46D4C23.F5S3×F5D6⋊F5Dic5.D12
kernelDic5.D12C3×C22.F5C158M4(2)C2×C5⋊D12S3×C2×C10C22×D15C22.F5C3×Dic5C2×Dic5Dic5Dic5C2×C10C22×S3C15C2×C6C6C5C3C22C2C1
# reps111122121222111224112

Matrix representation of Dic5.D12 in GL8(𝔽241)

910000000
129240100000
2391885200000
36227120980000
0000240000
0000024000
0000002400
0000000240
,
125391411200000
10974421860000
2052302051860000
196129177780000
0000567400
00002618500
000018915514243
0000015519899
,
8112822400000
135223322240000
1051461801910000
1671012102390000
0000409797
000010021
000067142239239
000054198239239
,
8112822400000
135223322240000
1051461801910000
1671012102390000
0000409797
000010012
000067142239239
000080142239239

G:=sub<GL(8,GF(241))| [91,129,239,36,0,0,0,0,0,240,188,227,0,0,0,0,0,1,52,120,0,0,0,0,0,0,0,98,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[125,109,205,196,0,0,0,0,39,74,230,129,0,0,0,0,141,42,205,177,0,0,0,0,120,186,186,78,0,0,0,0,0,0,0,0,56,26,189,0,0,0,0,0,74,185,155,155,0,0,0,0,0,0,142,198,0,0,0,0,0,0,43,99],[81,135,105,167,0,0,0,0,128,223,146,101,0,0,0,0,224,32,180,210,0,0,0,0,0,224,191,239,0,0,0,0,0,0,0,0,4,10,67,54,0,0,0,0,0,0,142,198,0,0,0,0,97,2,239,239,0,0,0,0,97,1,239,239],[81,135,105,167,0,0,0,0,128,223,146,101,0,0,0,0,224,32,180,210,0,0,0,0,0,224,191,239,0,0,0,0,0,0,0,0,4,10,67,80,0,0,0,0,0,0,142,142,0,0,0,0,97,1,239,239,0,0,0,0,97,2,239,239] >;

Dic5.D12 in GAP, Magma, Sage, TeX

{\rm Dic}_5.D_{12}
% in TeX

G:=Group("Dic5.D12");
// GroupNames label

G:=SmallGroup(480,250);
// by ID

G=gap.SmallGroup(480,250);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,100,675,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^10=1,b^2=c^12=a^5,d^2=b,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=a^5*b*c^11>;
// generators/relations

׿
×
𝔽