Copied to
clipboard

G = (C2×C10)⋊11D12order 480 = 25·3·5

2nd semidirect product of C2×C10 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C30)⋊9D4, C157C22≀C2, (S3×C10)⋊17D4, (C2×C10)⋊11D12, C55(D6⋊D4), D68(C5⋊D4), (C2×Dic5)⋊4D6, (S3×C23)⋊2D5, D6⋊Dic536C2, C10.165(S3×D4), C10.70(C2×D12), C30.250(C2×D4), C31(C242D5), C23.D513S3, C23.34(S3×D5), C223(C5⋊D12), (C6×Dic5)⋊8C22, (C22×C6).46D10, (C2×C30).212C23, (C22×S3).79D10, (C22×C10).112D6, (C22×D15)⋊7C22, (C2×Dic15)⋊14C22, (C22×C30).74C22, (C2×C6)⋊2(C5⋊D4), (S3×C22×C10)⋊2C2, C2.45(S3×C5⋊D4), C6.24(C2×C5⋊D4), (C2×C5⋊D12)⋊15C2, (C2×C157D4)⋊20C2, C2.25(C2×C5⋊D12), C22.241(C2×S3×D5), (S3×C2×C10).96C22, (C3×C23.D5)⋊15C2, (C2×C6).224(C22×D5), (C2×C10).224(C22×S3), SmallGroup(480,646)

Series: Derived Chief Lower central Upper central

C1C2×C30 — (C2×C10)⋊11D12
C1C5C15C30C2×C30C6×Dic5C2×C5⋊D12 — (C2×C10)⋊11D12
C15C2×C30 — (C2×C10)⋊11D12
C1C22C23

Generators and relations for (C2×C10)⋊11D12
 G = < a,b,c,d | a2=b10=c12=d2=1, ab=ba, cac-1=dad=ab5, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 1324 in 260 conjugacy classes, 60 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C24, Dic5, D10, C2×C10, C2×C10, C2×C10, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×C6, C5×S3, D15, C30, C30, C30, C22≀C2, C2×Dic5, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C22×C10, D6⋊C4, C3×C22⋊C4, C2×D12, C2×C3⋊D4, S3×C23, C3×Dic5, Dic15, S3×C10, S3×C10, D30, C2×C30, C2×C30, C2×C30, C23.D5, C23.D5, C2×C5⋊D4, C23×C10, D6⋊D4, C5⋊D12, C6×Dic5, C2×Dic15, C157D4, S3×C2×C10, S3×C2×C10, C22×D15, C22×C30, C242D5, D6⋊Dic5, C3×C23.D5, C2×C5⋊D12, C2×C157D4, S3×C22×C10, (C2×C10)⋊11D12
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, C22≀C2, C5⋊D4, C22×D5, C2×D12, S3×D4, S3×D5, C2×C5⋊D4, D6⋊D4, C5⋊D12, C2×S3×D5, C242D5, C2×C5⋊D12, S3×C5⋊D4, (C2×C10)⋊11D12

Smallest permutation representation of (C2×C10)⋊11D12
On 120 points
Generators in S120
(1 7)(2 59)(3 9)(4 49)(5 11)(6 51)(8 53)(10 55)(12 57)(13 19)(14 98)(15 21)(16 100)(17 23)(18 102)(20 104)(22 106)(24 108)(25 31)(26 91)(27 33)(28 93)(29 35)(30 95)(32 85)(34 87)(36 89)(37 75)(38 44)(39 77)(40 46)(41 79)(42 48)(43 81)(45 83)(47 73)(50 56)(52 58)(54 60)(61 67)(62 119)(63 69)(64 109)(65 71)(66 111)(68 113)(70 115)(72 117)(74 80)(76 82)(78 84)(86 92)(88 94)(90 96)(97 103)(99 105)(101 107)(110 116)(112 118)(114 120)
(1 44 97 71 96 52 76 19 110 25)(2 26 111 20 77 53 85 72 98 45)(3 46 99 61 86 54 78 21 112 27)(4 28 113 22 79 55 87 62 100 47)(5 48 101 63 88 56 80 23 114 29)(6 30 115 24 81 57 89 64 102 37)(7 38 103 65 90 58 82 13 116 31)(8 32 117 14 83 59 91 66 104 39)(9 40 105 67 92 60 84 15 118 33)(10 34 119 16 73 49 93 68 106 41)(11 42 107 69 94 50 74 17 120 35)(12 36 109 18 75 51 95 70 108 43)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 51)(2 50)(3 49)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 52)(13 102)(14 101)(15 100)(16 99)(17 98)(18 97)(19 108)(20 107)(21 106)(22 105)(23 104)(24 103)(25 95)(26 94)(27 93)(28 92)(29 91)(30 90)(31 89)(32 88)(33 87)(34 86)(35 85)(36 96)(37 82)(38 81)(39 80)(40 79)(41 78)(42 77)(43 76)(44 75)(45 74)(46 73)(47 84)(48 83)(61 119)(62 118)(63 117)(64 116)(65 115)(66 114)(67 113)(68 112)(69 111)(70 110)(71 109)(72 120)

G:=sub<Sym(120)| (1,7)(2,59)(3,9)(4,49)(5,11)(6,51)(8,53)(10,55)(12,57)(13,19)(14,98)(15,21)(16,100)(17,23)(18,102)(20,104)(22,106)(24,108)(25,31)(26,91)(27,33)(28,93)(29,35)(30,95)(32,85)(34,87)(36,89)(37,75)(38,44)(39,77)(40,46)(41,79)(42,48)(43,81)(45,83)(47,73)(50,56)(52,58)(54,60)(61,67)(62,119)(63,69)(64,109)(65,71)(66,111)(68,113)(70,115)(72,117)(74,80)(76,82)(78,84)(86,92)(88,94)(90,96)(97,103)(99,105)(101,107)(110,116)(112,118)(114,120), (1,44,97,71,96,52,76,19,110,25)(2,26,111,20,77,53,85,72,98,45)(3,46,99,61,86,54,78,21,112,27)(4,28,113,22,79,55,87,62,100,47)(5,48,101,63,88,56,80,23,114,29)(6,30,115,24,81,57,89,64,102,37)(7,38,103,65,90,58,82,13,116,31)(8,32,117,14,83,59,91,66,104,39)(9,40,105,67,92,60,84,15,118,33)(10,34,119,16,73,49,93,68,106,41)(11,42,107,69,94,50,74,17,120,35)(12,36,109,18,75,51,95,70,108,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,51)(2,50)(3,49)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,102)(14,101)(15,100)(16,99)(17,98)(18,97)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,95)(26,94)(27,93)(28,92)(29,91)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,96)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,84)(48,83)(61,119)(62,118)(63,117)(64,116)(65,115)(66,114)(67,113)(68,112)(69,111)(70,110)(71,109)(72,120)>;

G:=Group( (1,7)(2,59)(3,9)(4,49)(5,11)(6,51)(8,53)(10,55)(12,57)(13,19)(14,98)(15,21)(16,100)(17,23)(18,102)(20,104)(22,106)(24,108)(25,31)(26,91)(27,33)(28,93)(29,35)(30,95)(32,85)(34,87)(36,89)(37,75)(38,44)(39,77)(40,46)(41,79)(42,48)(43,81)(45,83)(47,73)(50,56)(52,58)(54,60)(61,67)(62,119)(63,69)(64,109)(65,71)(66,111)(68,113)(70,115)(72,117)(74,80)(76,82)(78,84)(86,92)(88,94)(90,96)(97,103)(99,105)(101,107)(110,116)(112,118)(114,120), (1,44,97,71,96,52,76,19,110,25)(2,26,111,20,77,53,85,72,98,45)(3,46,99,61,86,54,78,21,112,27)(4,28,113,22,79,55,87,62,100,47)(5,48,101,63,88,56,80,23,114,29)(6,30,115,24,81,57,89,64,102,37)(7,38,103,65,90,58,82,13,116,31)(8,32,117,14,83,59,91,66,104,39)(9,40,105,67,92,60,84,15,118,33)(10,34,119,16,73,49,93,68,106,41)(11,42,107,69,94,50,74,17,120,35)(12,36,109,18,75,51,95,70,108,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,51)(2,50)(3,49)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,102)(14,101)(15,100)(16,99)(17,98)(18,97)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,95)(26,94)(27,93)(28,92)(29,91)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,96)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,84)(48,83)(61,119)(62,118)(63,117)(64,116)(65,115)(66,114)(67,113)(68,112)(69,111)(70,110)(71,109)(72,120) );

G=PermutationGroup([[(1,7),(2,59),(3,9),(4,49),(5,11),(6,51),(8,53),(10,55),(12,57),(13,19),(14,98),(15,21),(16,100),(17,23),(18,102),(20,104),(22,106),(24,108),(25,31),(26,91),(27,33),(28,93),(29,35),(30,95),(32,85),(34,87),(36,89),(37,75),(38,44),(39,77),(40,46),(41,79),(42,48),(43,81),(45,83),(47,73),(50,56),(52,58),(54,60),(61,67),(62,119),(63,69),(64,109),(65,71),(66,111),(68,113),(70,115),(72,117),(74,80),(76,82),(78,84),(86,92),(88,94),(90,96),(97,103),(99,105),(101,107),(110,116),(112,118),(114,120)], [(1,44,97,71,96,52,76,19,110,25),(2,26,111,20,77,53,85,72,98,45),(3,46,99,61,86,54,78,21,112,27),(4,28,113,22,79,55,87,62,100,47),(5,48,101,63,88,56,80,23,114,29),(6,30,115,24,81,57,89,64,102,37),(7,38,103,65,90,58,82,13,116,31),(8,32,117,14,83,59,91,66,104,39),(9,40,105,67,92,60,84,15,118,33),(10,34,119,16,73,49,93,68,106,41),(11,42,107,69,94,50,74,17,120,35),(12,36,109,18,75,51,95,70,108,43)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,51),(2,50),(3,49),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,52),(13,102),(14,101),(15,100),(16,99),(17,98),(18,97),(19,108),(20,107),(21,106),(22,105),(23,104),(24,103),(25,95),(26,94),(27,93),(28,92),(29,91),(30,90),(31,89),(32,88),(33,87),(34,86),(35,85),(36,96),(37,82),(38,81),(39,80),(40,79),(41,78),(42,77),(43,76),(44,75),(45,74),(46,73),(47,84),(48,83),(61,119),(62,118),(63,117),(64,116),(65,115),(66,114),(67,113),(68,112),(69,111),(70,110),(71,109),(72,120)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A6B6C6D6E10A···10N10O···10AD12A12B12C12D15A15B30A···30N
order122222222223444556666610···1010···1012121212151530···30
size111122666660220206022222442···26···620202020444···4

72 irreducible representations

dim1111112222222222244444
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10D12C5⋊D4C5⋊D4S3×D4S3×D5C5⋊D12C2×S3×D5S3×C5⋊D4
kernel(C2×C10)⋊11D12D6⋊Dic5C3×C23.D5C2×C5⋊D12C2×C157D4S3×C22×C10C23.D5S3×C10C2×C30S3×C23C2×Dic5C22×C10C22×S3C22×C6C2×C10D6C2×C6C10C23C22C22C2
# reps12121114222142416822428

Matrix representation of (C2×C10)⋊11D12 in GL6(𝔽61)

6000000
0600000
001000
0006000
000010
000001
,
100000
010000
0041000
000300
000010
000001
,
60250000
1710000
000100
001000
00005919
0000481
,
60250000
010000
0006000
0060000
00005919
0000482

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,41,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,17,0,0,0,0,25,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,59,48,0,0,0,0,19,1],[60,0,0,0,0,0,25,1,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,0,0,0,59,48,0,0,0,0,19,2] >;

(C2×C10)⋊11D12 in GAP, Magma, Sage, TeX

(C_2\times C_{10})\rtimes_{11}D_{12}
% in TeX

G:=Group("(C2xC10):11D12");
// GroupNames label

G:=SmallGroup(480,646);
// by ID

G=gap.SmallGroup(480,646);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,141,422,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^12=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^5,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽