# Extensions 1→N→G→Q→1 with N=C3×C4○D4 and Q=D5

Direct product G=N×Q with N=C3×C4○D4 and Q=D5
dρLabelID
C3×D5×C4○D41204C3xD5xC4oD4480,1145

Semidirect products G=N:Q with N=C3×C4○D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×C4○D4)⋊1D5 = D4⋊D30φ: D5/C5C2 ⊆ Out C3×C4○D41204+(C3xC4oD4):1D5480,914
(C3×C4○D4)⋊2D5 = D4.8D30φ: D5/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4):2D5480,915
(C3×C4○D4)⋊3D5 = C4○D4×D15φ: D5/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):3D5480,1175
(C3×C4○D4)⋊4D5 = D48D30φ: D5/C5C2 ⊆ Out C3×C4○D41204+(C3xC4oD4):4D5480,1176
(C3×C4○D4)⋊5D5 = D4.10D30φ: D5/C5C2 ⊆ Out C3×C4○D42404-(C3xC4oD4):5D5480,1177
(C3×C4○D4)⋊6D5 = C3×D4⋊D10φ: D5/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):6D5480,742
(C3×C4○D4)⋊7D5 = C3×D4.8D10φ: D5/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4):7D5480,743
(C3×C4○D4)⋊8D5 = C3×D48D10φ: D5/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):8D5480,1146
(C3×C4○D4)⋊9D5 = C3×D4.10D10φ: D5/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4):9D5480,1147

Non-split extensions G=N.Q with N=C3×C4○D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×C4○D4).1D5 = Q83Dic15φ: D5/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4).1D5480,197
(C3×C4○D4).2D5 = D4.Dic15φ: D5/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4).2D5480,913
(C3×C4○D4).3D5 = D4.9D30φ: D5/C5C2 ⊆ Out C3×C4○D42404-(C3xC4oD4).3D5480,916
(C3×C4○D4).4D5 = C3×D42Dic5φ: D5/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4).4D5480,115
(C3×C4○D4).5D5 = C3×D4.9D10φ: D5/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4).5D5480,744
(C3×C4○D4).6D5 = C3×D4.Dic5φ: trivial image2404(C3xC4oD4).6D5480,741

׿
×
𝔽