Extensions 1→N→G→Q→1 with N=A4×C20 and Q=C2

Direct product G=N×Q with N=A4×C20 and Q=C2
dρLabelID
A4×C2×C20120A4xC2xC20480,1126

Semidirect products G=N:Q with N=A4×C20 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C20)⋊1C2 = C20⋊S4φ: C2/C1C2 ⊆ Out A4×C20606+(A4xC20):1C2480,1026
(A4×C20)⋊2C2 = C4×C5⋊S4φ: C2/C1C2 ⊆ Out A4×C20606(A4xC20):2C2480,1025
(A4×C20)⋊3C2 = A4×D20φ: C2/C1C2 ⊆ Out A4×C20606+(A4xC20):3C2480,1037
(A4×C20)⋊4C2 = C5×C4⋊S4φ: C2/C1C2 ⊆ Out A4×C20606(A4xC20):4C2480,1015
(A4×C20)⋊5C2 = C4×D5×A4φ: C2/C1C2 ⊆ Out A4×C20606(A4xC20):5C2480,1036
(A4×C20)⋊6C2 = C20×S4φ: C2/C1C2 ⊆ Out A4×C20603(A4xC20):6C2480,1014
(A4×C20)⋊7C2 = C5×D4×A4φ: C2/C1C2 ⊆ Out A4×C20606(A4xC20):7C2480,1127

Non-split extensions G=N.Q with N=A4×C20 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C20).1C2 = C20.1S4φ: C2/C1C2 ⊆ Out A4×C201206-(A4xC20).1C2480,1024
(A4×C20).2C2 = C20.S4φ: C2/C1C2 ⊆ Out A4×C201206(A4xC20).2C2480,259
(A4×C20).3C2 = A4×Dic10φ: C2/C1C2 ⊆ Out A4×C201206-(A4xC20).3C2480,1035
(A4×C20).4C2 = C5×A4⋊Q8φ: C2/C1C2 ⊆ Out A4×C201206(A4xC20).4C2480,1013
(A4×C20).5C2 = A4×C52C8φ: C2/C1C2 ⊆ Out A4×C201206(A4xC20).5C2480,265
(A4×C20).6C2 = C5×A4⋊C8φ: C2/C1C2 ⊆ Out A4×C201203(A4xC20).6C2480,255
(A4×C20).7C2 = C5×Q8×A4φ: C2/C1C2 ⊆ Out A4×C201206(A4xC20).7C2480,1129
(A4×C20).8C2 = A4×C40φ: trivial image1203(A4xC20).8C2480,659

׿
×
𝔽