Copied to
clipboard

G = C20.1S4order 480 = 25·3·5

1st non-split extension by C20 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C20.1S4, C22⋊Dic30, A42Dic10, C23.1D30, C4.1(C5⋊S4), C52(A4⋊Q8), (C5×A4)⋊2Q8, (C4×A4).1D5, C10.16(C2×S4), (A4×C20).1C2, (C2×A4).8D10, (C2×C10)⋊3Dic6, A4⋊Dic5.1C2, (C22×C20).2S3, (C22×C4).2D15, (C10×A4).8C22, (C22×C10).13D6, C2.3(C2×C5⋊S4), SmallGroup(480,1024)

Series: Derived Chief Lower central Upper central

C1C22C10×A4 — C20.1S4
C1C22C2×C10C5×A4C10×A4A4⋊Dic5 — C20.1S4
C5×A4C10×A4 — C20.1S4
C1C2C4

Generators and relations for C20.1S4
 G = < a,b,c,d,e | a20=b2=c2=d3=1, e2=a10, ab=ba, ac=ca, ad=da, eae-1=a-1, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >

Subgroups: 588 in 84 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C2×C4, Q8, C23, C10, C10, Dic3, C12, A4, C15, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, Dic6, C2×A4, C30, C22⋊Q8, Dic10, C2×Dic5, C2×C20, C22×C10, A4⋊C4, C4×A4, Dic15, C60, C5×A4, C10.D4, C4⋊Dic5, C23.D5, C2×Dic10, C22×C20, A4⋊Q8, Dic30, C10×A4, C20.48D4, A4⋊Dic5, A4×C20, C20.1S4
Quotients: C1, C2, C22, S3, Q8, D5, D6, D10, Dic6, S4, D15, Dic10, C2×S4, D30, A4⋊Q8, Dic30, C5⋊S4, C2×C5⋊S4, C20.1S4

Smallest permutation representation of C20.1S4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 60 110)(2 41 111)(3 42 112)(4 43 113)(5 44 114)(6 45 115)(7 46 116)(8 47 117)(9 48 118)(10 49 119)(11 50 120)(12 51 101)(13 52 102)(14 53 103)(15 54 104)(16 55 105)(17 56 106)(18 57 107)(19 58 108)(20 59 109)(21 64 86)(22 65 87)(23 66 88)(24 67 89)(25 68 90)(26 69 91)(27 70 92)(28 71 93)(29 72 94)(30 73 95)(31 74 96)(32 75 97)(33 76 98)(34 77 99)(35 78 100)(36 79 81)(37 80 82)(38 61 83)(39 62 84)(40 63 85)
(1 99 11 89)(2 98 12 88)(3 97 13 87)(4 96 14 86)(5 95 15 85)(6 94 16 84)(7 93 17 83)(8 92 18 82)(9 91 19 81)(10 90 20 100)(21 113 31 103)(22 112 32 102)(23 111 33 101)(24 110 34 120)(25 109 35 119)(26 108 36 118)(27 107 37 117)(28 106 38 116)(29 105 39 115)(30 104 40 114)(41 76 51 66)(42 75 52 65)(43 74 53 64)(44 73 54 63)(45 72 55 62)(46 71 56 61)(47 70 57 80)(48 69 58 79)(49 68 59 78)(50 67 60 77)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,60,110)(2,41,111)(3,42,112)(4,43,113)(5,44,114)(6,45,115)(7,46,116)(8,47,117)(9,48,118)(10,49,119)(11,50,120)(12,51,101)(13,52,102)(14,53,103)(15,54,104)(16,55,105)(17,56,106)(18,57,107)(19,58,108)(20,59,109)(21,64,86)(22,65,87)(23,66,88)(24,67,89)(25,68,90)(26,69,91)(27,70,92)(28,71,93)(29,72,94)(30,73,95)(31,74,96)(32,75,97)(33,76,98)(34,77,99)(35,78,100)(36,79,81)(37,80,82)(38,61,83)(39,62,84)(40,63,85), (1,99,11,89)(2,98,12,88)(3,97,13,87)(4,96,14,86)(5,95,15,85)(6,94,16,84)(7,93,17,83)(8,92,18,82)(9,91,19,81)(10,90,20,100)(21,113,31,103)(22,112,32,102)(23,111,33,101)(24,110,34,120)(25,109,35,119)(26,108,36,118)(27,107,37,117)(28,106,38,116)(29,105,39,115)(30,104,40,114)(41,76,51,66)(42,75,52,65)(43,74,53,64)(44,73,54,63)(45,72,55,62)(46,71,56,61)(47,70,57,80)(48,69,58,79)(49,68,59,78)(50,67,60,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,60,110)(2,41,111)(3,42,112)(4,43,113)(5,44,114)(6,45,115)(7,46,116)(8,47,117)(9,48,118)(10,49,119)(11,50,120)(12,51,101)(13,52,102)(14,53,103)(15,54,104)(16,55,105)(17,56,106)(18,57,107)(19,58,108)(20,59,109)(21,64,86)(22,65,87)(23,66,88)(24,67,89)(25,68,90)(26,69,91)(27,70,92)(28,71,93)(29,72,94)(30,73,95)(31,74,96)(32,75,97)(33,76,98)(34,77,99)(35,78,100)(36,79,81)(37,80,82)(38,61,83)(39,62,84)(40,63,85), (1,99,11,89)(2,98,12,88)(3,97,13,87)(4,96,14,86)(5,95,15,85)(6,94,16,84)(7,93,17,83)(8,92,18,82)(9,91,19,81)(10,90,20,100)(21,113,31,103)(22,112,32,102)(23,111,33,101)(24,110,34,120)(25,109,35,119)(26,108,36,118)(27,107,37,117)(28,106,38,116)(29,105,39,115)(30,104,40,114)(41,76,51,66)(42,75,52,65)(43,74,53,64)(44,73,54,63)(45,72,55,62)(46,71,56,61)(47,70,57,80)(48,69,58,79)(49,68,59,78)(50,67,60,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,60,110),(2,41,111),(3,42,112),(4,43,113),(5,44,114),(6,45,115),(7,46,116),(8,47,117),(9,48,118),(10,49,119),(11,50,120),(12,51,101),(13,52,102),(14,53,103),(15,54,104),(16,55,105),(17,56,106),(18,57,107),(19,58,108),(20,59,109),(21,64,86),(22,65,87),(23,66,88),(24,67,89),(25,68,90),(26,69,91),(27,70,92),(28,71,93),(29,72,94),(30,73,95),(31,74,96),(32,75,97),(33,76,98),(34,77,99),(35,78,100),(36,79,81),(37,80,82),(38,61,83),(39,62,84),(40,63,85)], [(1,99,11,89),(2,98,12,88),(3,97,13,87),(4,96,14,86),(5,95,15,85),(6,94,16,84),(7,93,17,83),(8,92,18,82),(9,91,19,81),(10,90,20,100),(21,113,31,103),(22,112,32,102),(23,111,33,101),(24,110,34,120),(25,109,35,119),(26,108,36,118),(27,107,37,117),(28,106,38,116),(29,105,39,115),(30,104,40,114),(41,76,51,66),(42,75,52,65),(43,74,53,64),(44,73,54,63),(45,72,55,62),(46,71,56,61),(47,70,57,80),(48,69,58,79),(49,68,59,78),(50,67,60,77)]])

46 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F5A5B 6 10A10B10C10D10E10F12A12B15A15B15C15D20A20B20C20D20E20F20G20H30A30B30C30D60A···60H
order1222344444455610101010101012121515151520202020202020203030303060···60
size1133826606060602282266668888882222666688888···8

46 irreducible representations

dim1112222222222336666
type++++-+++-+-+-++-++-
imageC1C2C2S3Q8D5D6D10Dic6D15Dic10D30Dic30S4C2×S4A4⋊Q8C5⋊S4C2×C5⋊S4C20.1S4
kernelC20.1S4A4⋊Dic5A4×C20C22×C20C5×A4C4×A4C22×C10C2×A4C2×C10C22×C4A4C23C22C20C10C5C4C2C1
# reps1211121224448221224

Matrix representation of C20.1S4 in GL5(𝔽61)

3213000
938000
00100
00010
00001
,
10000
01000
006000
006001
006010
,
10000
01000
000160
001060
000060
,
10000
01000
00010
00001
00100
,
4751000
3814000
000600
006000
000060

G:=sub<GL(5,GF(61))| [32,9,0,0,0,13,38,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,60,60,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[47,38,0,0,0,51,14,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,60] >;

C20.1S4 in GAP, Magma, Sage, TeX

C_{20}._1S_4
% in TeX

G:=Group("C20.1S4");
// GroupNames label

G:=SmallGroup(480,1024);
// by ID

G=gap.SmallGroup(480,1024);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,28,85,36,451,3364,10085,1286,5886,2232]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=b^2=c^2=d^3=1,e^2=a^10,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽