Extensions 1→N→G→Q→1 with N=C6×D20 and Q=C2

Direct product G=N×Q with N=C6×D20 and Q=C2
dρLabelID
C2×C6×D20240C2xC6xD20480,1137

Semidirect products G=N:Q with N=C6×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D20)⋊1C2 = C60.36D4φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20):1C2480,374
(C6×D20)⋊2C2 = D6030C22φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20):2C2480,388
(C6×D20)⋊3C2 = D2025D6φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20):3C2480,1093
(C6×D20)⋊4C2 = C2×C3⋊D40φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):4C2480,376
(C6×D20)⋊5C2 = C604D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):5C2480,532
(C6×D20)⋊6C2 = C12⋊D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):6C2480,534
(C6×D20)⋊7C2 = C2×D205S3φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):7C2480,1074
(C6×D20)⋊8C2 = C2×S3×D20φ: C2/C1C2 ⊆ Out C6×D20120(C6xD20):8C2480,1088
(C6×D20)⋊9C2 = C2×C15⋊D8φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):9C2480,372
(C6×D20)⋊10C2 = C6010D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):10C2480,539
(C6×D20)⋊11C2 = C122D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):11C2480,541
(C6×D20)⋊12C2 = C2×D20⋊S3φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):12C2480,1075
(C6×D20)⋊13C2 = C2×C20⋊D6φ: C2/C1C2 ⊆ Out C6×D20120(C6xD20):13C2480,1089
(C6×D20)⋊14C2 = Dic15⋊D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):14C2480,484
(C6×D20)⋊15C2 = Dic3⋊D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):15C2480,485
(C6×D20)⋊16C2 = D64D20φ: C2/C1C2 ⊆ Out C6×D20120(C6xD20):16C2480,550
(C6×D20)⋊17C2 = C3×C204D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):17C2480,667
(C6×D20)⋊18C2 = C3×C22⋊D20φ: C2/C1C2 ⊆ Out C6×D20120(C6xD20):18C2480,675
(C6×D20)⋊19C2 = C3×D10⋊D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):19C2480,677
(C6×D20)⋊20C2 = C3×C4⋊D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):20C2480,688
(C6×D20)⋊21C2 = C6×D40φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):21C2480,696
(C6×D20)⋊22C2 = C3×C207D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):22C2480,723
(C6×D20)⋊23C2 = C3×C8⋊D10φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20):23C2480,701
(C6×D20)⋊24C2 = C6×D4⋊D5φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):24C2480,724
(C6×D20)⋊25C2 = C3×C20⋊D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):25C2480,733
(C6×D20)⋊26C2 = C3×D4⋊D10φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20):26C2480,742
(C6×D20)⋊27C2 = C6×D4×D5φ: C2/C1C2 ⊆ Out C6×D20120(C6xD20):27C2480,1139
(C6×D20)⋊28C2 = C6×Q82D5φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20):28C2480,1143
(C6×D20)⋊29C2 = C3×D48D10φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20):29C2480,1146
(C6×D20)⋊30C2 = C6×C4○D20φ: trivial image240(C6xD20):30C2480,1138

Non-split extensions G=N.Q with N=C6×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D20).1C2 = C60.28D4φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20).1C2480,34
(C6×D20).2C2 = C6.D40φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).2C2480,41
(C6×D20).3C2 = C2×C6.D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).3C2480,386
(C6×D20).4C2 = C60.44D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).4C2480,440
(C6×D20).5C2 = Dic3×D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).5C2480,501
(C6×D20).6C2 = C30.D8φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).6C2480,40
(C6×D20).7C2 = C2×C30.D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).7C2480,382
(C6×D20).8C2 = C60.88D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).8C2480,444
(C6×D20).9C2 = D208Dic3φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).9C2480,510
(C6×D20).10C2 = C3×D205C4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).10C2480,99
(C6×D20).11C2 = C3×D10.D4φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20).11C2480,279
(C6×D20).12C2 = (C2×C60)⋊C4φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20).12C2480,304
(C6×D20).13C2 = (C6×D5).D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).13C2480,483
(C6×D20).14C2 = C3×C4.D20φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).14C2480,668
(C6×D20).15C2 = C3×D10.13D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).15C2480,687
(C6×D20).16C2 = C6×C40⋊C2φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).16C2480,695
(C6×D20).17C2 = C3×D206C4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).17C2480,87
(C6×D20).18C2 = C3×C20.46D4φ: C2/C1C2 ⊆ Out C6×D201204(C6xD20).18C2480,101
(C6×D20).19C2 = C3×D208C4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).19C2480,686
(C6×D20).20C2 = C6×Q8⋊D5φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).20C2480,734
(C6×D20).21C2 = C3×C20.23D4φ: C2/C1C2 ⊆ Out C6×D20240(C6xD20).21C2480,740
(C6×D20).22C2 = C12×D20φ: trivial image240(C6xD20).22C2480,666

׿
×
𝔽