Extensions 1→N→G→Q→1 with N=Dic10 and Q=C12

Direct product G=N×Q with N=Dic10 and Q=C12
dρLabelID
C12×Dic10480C12xDic10480,661

Semidirect products G=N:Q with N=Dic10 and Q=C12
extensionφ:Q→Out NdρLabelID
Dic101C12 = C3×D4⋊F5φ: C12/C3C4 ⊆ Out Dic101208Dic10:1C12480,288
Dic102C12 = C3×Q8⋊F5φ: C12/C3C4 ⊆ Out Dic101208Dic10:2C12480,289
Dic103C12 = C3×Q8×F5φ: C12/C3C4 ⊆ Out Dic101208Dic10:3C12480,1056
Dic104C12 = C3×D204C4φ: C12/C6C2 ⊆ Out Dic101202Dic10:4C12480,83
Dic105C12 = C3×C20.44D4φ: C12/C6C2 ⊆ Out Dic10480Dic10:5C12480,94
Dic106C12 = C3×C10.Q16φ: C12/C6C2 ⊆ Out Dic10480Dic10:6C12480,88
Dic107C12 = C3×D207C4φ: C12/C6C2 ⊆ Out Dic101204Dic10:7C12480,103
Dic108C12 = C3×Dic53Q8φ: C12/C6C2 ⊆ Out Dic10480Dic10:8C12480,680

Non-split extensions G=N.Q with N=Dic10 and Q=C12
extensionφ:Q→Out NdρLabelID
Dic10.C12 = C3×D4.F5φ: C12/C3C4 ⊆ Out Dic102408Dic10.C12480,1053
Dic10.2C12 = C3×D20.2C4φ: C12/C6C2 ⊆ Out Dic102404Dic10.2C12480,700
Dic10.3C12 = C3×D20.3C4φ: trivial image2402Dic10.3C12480,694

׿
×
𝔽