Copied to
clipboard

G = C3×Q8⋊F5order 480 = 25·3·5

Direct product of C3 and Q8⋊F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×Q8⋊F5, Dic102C12, (C3×Q8)⋊4F5, Q82(C3×F5), C4⋊F5.1C6, C4.3(C6×F5), D5⋊C8.1C6, (Q8×C15)⋊4C4, (C5×Q8)⋊3C12, (Q8×D5).4C6, C60.42(C2×C4), C20.3(C2×C12), (C6×D5).81D4, C12.42(C2×F5), D5.2(C3×Q16), (C3×D5).7Q16, (C3×Dic10)⋊5C4, D10.19(C3×D4), D5.3(C3×SD16), Dic5.3(C3×D4), C1510(Q8⋊C4), (C3×Dic5).42D4, (C3×D5).11SD16, C6.33(C22⋊F5), C30.33(C22⋊C4), (D5×C12).84C22, C5⋊(C3×Q8⋊C4), (C3×Q8×D5).5C2, (C3×C4⋊F5).5C2, (C3×D5⋊C8).4C2, (C4×D5).9(C2×C6), C2.8(C3×C22⋊F5), C10.7(C3×C22⋊C4), SmallGroup(480,289)

Series: Derived Chief Lower central Upper central

C1C20 — C3×Q8⋊F5
C1C5C10C20C4×D5D5×C12C3×C4⋊F5 — C3×Q8⋊F5
C5C10C20 — C3×Q8⋊F5
C1C6C12C3×Q8

Generators and relations for C3×Q8⋊F5
 G = < a,b,c,d,e | a3=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, cd=dc, ece-1=b-1c, ede-1=d3 >

Subgroups: 312 in 84 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, Q8, Q8, D5, C10, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, C2×Q8, Dic5, Dic5, C20, C20, F5, D10, C24, C2×C12, C3×Q8, C3×Q8, C3×D5, C30, Q8⋊C4, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, C5×Q8, C2×F5, C3×C4⋊C4, C2×C24, C6×Q8, C3×Dic5, C3×Dic5, C60, C60, C3×F5, C6×D5, D5⋊C8, C4⋊F5, Q8×D5, C3×Q8⋊C4, C3×C5⋊C8, C3×Dic10, C3×Dic10, D5×C12, D5×C12, Q8×C15, C6×F5, Q8⋊F5, C3×D5⋊C8, C3×C4⋊F5, C3×Q8×D5, C3×Q8⋊F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, SD16, Q16, F5, C2×C12, C3×D4, Q8⋊C4, C2×F5, C3×C22⋊C4, C3×SD16, C3×Q16, C3×F5, C22⋊F5, C3×Q8⋊C4, C6×F5, Q8⋊F5, C3×C22⋊F5, C3×Q8⋊F5

Smallest permutation representation of C3×Q8⋊F5
On 120 points
Generators in S120
(1 44 24)(2 45 25)(3 41 21)(4 42 22)(5 43 23)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)
(1 69 9 64)(2 70 10 65)(3 66 6 61)(4 67 7 62)(5 68 8 63)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 86 26 81)(22 87 27 82)(23 88 28 83)(24 89 29 84)(25 90 30 85)(31 96 36 91)(32 97 37 92)(33 98 38 93)(34 99 39 94)(35 100 40 95)(41 106 46 101)(42 107 47 102)(43 108 48 103)(44 109 49 104)(45 110 50 105)(51 116 56 111)(52 117 57 112)(53 118 58 113)(54 119 59 114)(55 120 60 115)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(2 3 5 4)(6 8 7 10)(11 18 12 20)(13 17 15 16)(14 19)(21 23 22 25)(26 28 27 30)(31 38 32 40)(33 37 35 36)(34 39)(41 43 42 45)(46 48 47 50)(51 58 52 60)(53 57 55 56)(54 59)(61 73 62 75)(63 72 65 71)(64 74)(66 78 67 80)(68 77 70 76)(69 79)(81 93 82 95)(83 92 85 91)(84 94)(86 98 87 100)(88 97 90 96)(89 99)(101 113 102 115)(103 112 105 111)(104 114)(106 118 107 120)(108 117 110 116)(109 119)

G:=sub<Sym(120)| (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,69,9,64)(2,70,10,65)(3,66,6,61)(4,67,7,62)(5,68,8,63)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(6,8,7,10)(11,18,12,20)(13,17,15,16)(14,19)(21,23,22,25)(26,28,27,30)(31,38,32,40)(33,37,35,36)(34,39)(41,43,42,45)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)(61,73,62,75)(63,72,65,71)(64,74)(66,78,67,80)(68,77,70,76)(69,79)(81,93,82,95)(83,92,85,91)(84,94)(86,98,87,100)(88,97,90,96)(89,99)(101,113,102,115)(103,112,105,111)(104,114)(106,118,107,120)(108,117,110,116)(109,119)>;

G:=Group( (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,69,9,64)(2,70,10,65)(3,66,6,61)(4,67,7,62)(5,68,8,63)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(6,8,7,10)(11,18,12,20)(13,17,15,16)(14,19)(21,23,22,25)(26,28,27,30)(31,38,32,40)(33,37,35,36)(34,39)(41,43,42,45)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)(61,73,62,75)(63,72,65,71)(64,74)(66,78,67,80)(68,77,70,76)(69,79)(81,93,82,95)(83,92,85,91)(84,94)(86,98,87,100)(88,97,90,96)(89,99)(101,113,102,115)(103,112,105,111)(104,114)(106,118,107,120)(108,117,110,116)(109,119) );

G=PermutationGroup([[(1,44,24),(2,45,25),(3,41,21),(4,42,22),(5,43,23),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120)], [(1,69,9,64),(2,70,10,65),(3,66,6,61),(4,67,7,62),(5,68,8,63),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,86,26,81),(22,87,27,82),(23,88,28,83),(24,89,29,84),(25,90,30,85),(31,96,36,91),(32,97,37,92),(33,98,38,93),(34,99,39,94),(35,100,40,95),(41,106,46,101),(42,107,47,102),(43,108,48,103),(44,109,49,104),(45,110,50,105),(51,116,56,111),(52,117,57,112),(53,118,58,113),(54,119,59,114),(55,120,60,115)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(2,3,5,4),(6,8,7,10),(11,18,12,20),(13,17,15,16),(14,19),(21,23,22,25),(26,28,27,30),(31,38,32,40),(33,37,35,36),(34,39),(41,43,42,45),(46,48,47,50),(51,58,52,60),(53,57,55,56),(54,59),(61,73,62,75),(63,72,65,71),(64,74),(66,78,67,80),(68,77,70,76),(69,79),(81,93,82,95),(83,92,85,91),(84,94),(86,98,87,100),(88,97,90,96),(89,99),(101,113,102,115),(103,112,105,111),(104,114),(106,118,107,120),(108,117,110,116),(109,119)]])

57 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F 5 6A6B6C6D6E6F8A8B8C8D 10 12A12B12C12D12E12F12G···12L15A15B20A20B20C24A···24H30A30B60A···60F
order122233444444566666688881012121212121212···12151520202024···24303060···60
size115511241020202041155551010101042244101020···204488810···10448···8

57 irreducible representations

dim1111111111112222222244444488
type++++++-+++-
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4SD16Q16C3×D4C3×D4C3×SD16C3×Q16F5C2×F5C3×F5C22⋊F5C6×F5C3×C22⋊F5Q8⋊F5C3×Q8⋊F5
kernelC3×Q8⋊F5C3×D5⋊C8C3×C4⋊F5C3×Q8×D5Q8⋊F5C3×Dic10Q8×C15D5⋊C8C4⋊F5Q8×D5Dic10C5×Q8C3×Dic5C6×D5C3×D5C3×D5Dic5D10D5D5C3×Q8C12Q8C6C4C2C3C1
# reps1111222222441122224411222412

Matrix representation of C3×Q8⋊F5 in GL6(𝔽241)

22500000
02250000
001000
000100
000010
000001
,
1960000
52400000
00240000
00024000
00002400
00000240
,
2031040000
146380000
00124077
002341172340
000234117234
00770124
,
100000
010000
000100
000010
000001
00240240240240
,
17700000
162640000
001000
000001
000100
00240240240240

G:=sub<GL(6,GF(241))| [225,0,0,0,0,0,0,225,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,5,0,0,0,0,96,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[203,146,0,0,0,0,104,38,0,0,0,0,0,0,124,234,0,7,0,0,0,117,234,7,0,0,7,234,117,0,0,0,7,0,234,124],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,0,0,1,0,0,240,0,0,0,1,0,240,0,0,0,0,1,240],[177,162,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,240,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,1,0,240] >;

C3×Q8⋊F5 in GAP, Magma, Sage, TeX

C_3\times Q_8\rtimes F_5
% in TeX

G:=Group("C3xQ8:F5");
// GroupNames label

G:=SmallGroup(480,289);
// by ID

G=gap.SmallGroup(480,289);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,344,2524,1271,102,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽