direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3×Q8⋊F5, Dic10⋊2C12, (C3×Q8)⋊4F5, Q8⋊2(C3×F5), C4⋊F5.1C6, C4.3(C6×F5), D5⋊C8.1C6, (Q8×C15)⋊4C4, (C5×Q8)⋊3C12, (Q8×D5).4C6, C60.42(C2×C4), C20.3(C2×C12), (C6×D5).81D4, C12.42(C2×F5), D5.2(C3×Q16), (C3×D5).7Q16, (C3×Dic10)⋊5C4, D10.19(C3×D4), D5.3(C3×SD16), Dic5.3(C3×D4), C15⋊10(Q8⋊C4), (C3×Dic5).42D4, (C3×D5).11SD16, C6.33(C22⋊F5), C30.33(C22⋊C4), (D5×C12).84C22, C5⋊(C3×Q8⋊C4), (C3×Q8×D5).5C2, (C3×C4⋊F5).5C2, (C3×D5⋊C8).4C2, (C4×D5).9(C2×C6), C2.8(C3×C22⋊F5), C10.7(C3×C22⋊C4), SmallGroup(480,289)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Q8⋊F5
G = < a,b,c,d,e | a3=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, cd=dc, ece-1=b-1c, ede-1=d3 >
Subgroups: 312 in 84 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, Q8, Q8, D5, C10, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, C2×Q8, Dic5, Dic5, C20, C20, F5, D10, C24, C2×C12, C3×Q8, C3×Q8, C3×D5, C30, Q8⋊C4, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, C5×Q8, C2×F5, C3×C4⋊C4, C2×C24, C6×Q8, C3×Dic5, C3×Dic5, C60, C60, C3×F5, C6×D5, D5⋊C8, C4⋊F5, Q8×D5, C3×Q8⋊C4, C3×C5⋊C8, C3×Dic10, C3×Dic10, D5×C12, D5×C12, Q8×C15, C6×F5, Q8⋊F5, C3×D5⋊C8, C3×C4⋊F5, C3×Q8×D5, C3×Q8⋊F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, SD16, Q16, F5, C2×C12, C3×D4, Q8⋊C4, C2×F5, C3×C22⋊C4, C3×SD16, C3×Q16, C3×F5, C22⋊F5, C3×Q8⋊C4, C6×F5, Q8⋊F5, C3×C22⋊F5, C3×Q8⋊F5
(1 44 24)(2 45 25)(3 41 21)(4 42 22)(5 43 23)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)
(1 69 9 64)(2 70 10 65)(3 66 6 61)(4 67 7 62)(5 68 8 63)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 86 26 81)(22 87 27 82)(23 88 28 83)(24 89 29 84)(25 90 30 85)(31 96 36 91)(32 97 37 92)(33 98 38 93)(34 99 39 94)(35 100 40 95)(41 106 46 101)(42 107 47 102)(43 108 48 103)(44 109 49 104)(45 110 50 105)(51 116 56 111)(52 117 57 112)(53 118 58 113)(54 119 59 114)(55 120 60 115)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(2 3 5 4)(6 8 7 10)(11 18 12 20)(13 17 15 16)(14 19)(21 23 22 25)(26 28 27 30)(31 38 32 40)(33 37 35 36)(34 39)(41 43 42 45)(46 48 47 50)(51 58 52 60)(53 57 55 56)(54 59)(61 73 62 75)(63 72 65 71)(64 74)(66 78 67 80)(68 77 70 76)(69 79)(81 93 82 95)(83 92 85 91)(84 94)(86 98 87 100)(88 97 90 96)(89 99)(101 113 102 115)(103 112 105 111)(104 114)(106 118 107 120)(108 117 110 116)(109 119)
G:=sub<Sym(120)| (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,69,9,64)(2,70,10,65)(3,66,6,61)(4,67,7,62)(5,68,8,63)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(6,8,7,10)(11,18,12,20)(13,17,15,16)(14,19)(21,23,22,25)(26,28,27,30)(31,38,32,40)(33,37,35,36)(34,39)(41,43,42,45)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)(61,73,62,75)(63,72,65,71)(64,74)(66,78,67,80)(68,77,70,76)(69,79)(81,93,82,95)(83,92,85,91)(84,94)(86,98,87,100)(88,97,90,96)(89,99)(101,113,102,115)(103,112,105,111)(104,114)(106,118,107,120)(108,117,110,116)(109,119)>;
G:=Group( (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,69,9,64)(2,70,10,65)(3,66,6,61)(4,67,7,62)(5,68,8,63)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(6,8,7,10)(11,18,12,20)(13,17,15,16)(14,19)(21,23,22,25)(26,28,27,30)(31,38,32,40)(33,37,35,36)(34,39)(41,43,42,45)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)(61,73,62,75)(63,72,65,71)(64,74)(66,78,67,80)(68,77,70,76)(69,79)(81,93,82,95)(83,92,85,91)(84,94)(86,98,87,100)(88,97,90,96)(89,99)(101,113,102,115)(103,112,105,111)(104,114)(106,118,107,120)(108,117,110,116)(109,119) );
G=PermutationGroup([[(1,44,24),(2,45,25),(3,41,21),(4,42,22),(5,43,23),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120)], [(1,69,9,64),(2,70,10,65),(3,66,6,61),(4,67,7,62),(5,68,8,63),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,86,26,81),(22,87,27,82),(23,88,28,83),(24,89,29,84),(25,90,30,85),(31,96,36,91),(32,97,37,92),(33,98,38,93),(34,99,39,94),(35,100,40,95),(41,106,46,101),(42,107,47,102),(43,108,48,103),(44,109,49,104),(45,110,50,105),(51,116,56,111),(52,117,57,112),(53,118,58,113),(54,119,59,114),(55,120,60,115)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(2,3,5,4),(6,8,7,10),(11,18,12,20),(13,17,15,16),(14,19),(21,23,22,25),(26,28,27,30),(31,38,32,40),(33,37,35,36),(34,39),(41,43,42,45),(46,48,47,50),(51,58,52,60),(53,57,55,56),(54,59),(61,73,62,75),(63,72,65,71),(64,74),(66,78,67,80),(68,77,70,76),(69,79),(81,93,82,95),(83,92,85,91),(84,94),(86,98,87,100),(88,97,90,96),(89,99),(101,113,102,115),(103,112,105,111),(104,114),(106,118,107,120),(108,117,110,116),(109,119)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 10 | 12A | 12B | 12C | 12D | 12E | 12F | 12G | ··· | 12L | 15A | 15B | 20A | 20B | 20C | 24A | ··· | 24H | 30A | 30B | 60A | ··· | 60F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 15 | 15 | 20 | 20 | 20 | 24 | ··· | 24 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 5 | 5 | 1 | 1 | 2 | 4 | 10 | 20 | 20 | 20 | 4 | 1 | 1 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | ··· | 20 | 4 | 4 | 8 | 8 | 8 | 10 | ··· | 10 | 4 | 4 | 8 | ··· | 8 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | - | + | + | + | - | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | D4 | D4 | SD16 | Q16 | C3×D4 | C3×D4 | C3×SD16 | C3×Q16 | F5 | C2×F5 | C3×F5 | C22⋊F5 | C6×F5 | C3×C22⋊F5 | Q8⋊F5 | C3×Q8⋊F5 |
kernel | C3×Q8⋊F5 | C3×D5⋊C8 | C3×C4⋊F5 | C3×Q8×D5 | Q8⋊F5 | C3×Dic10 | Q8×C15 | D5⋊C8 | C4⋊F5 | Q8×D5 | Dic10 | C5×Q8 | C3×Dic5 | C6×D5 | C3×D5 | C3×D5 | Dic5 | D10 | D5 | D5 | C3×Q8 | C12 | Q8 | C6 | C4 | C2 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 |
Matrix representation of C3×Q8⋊F5 ►in GL6(𝔽241)
225 | 0 | 0 | 0 | 0 | 0 |
0 | 225 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 96 | 0 | 0 | 0 | 0 |
5 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 0 | 240 |
203 | 104 | 0 | 0 | 0 | 0 |
146 | 38 | 0 | 0 | 0 | 0 |
0 | 0 | 124 | 0 | 7 | 7 |
0 | 0 | 234 | 117 | 234 | 0 |
0 | 0 | 0 | 234 | 117 | 234 |
0 | 0 | 7 | 7 | 0 | 124 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 240 | 240 | 240 | 240 |
177 | 0 | 0 | 0 | 0 | 0 |
162 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 240 | 240 | 240 | 240 |
G:=sub<GL(6,GF(241))| [225,0,0,0,0,0,0,225,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,5,0,0,0,0,96,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[203,146,0,0,0,0,104,38,0,0,0,0,0,0,124,234,0,7,0,0,0,117,234,7,0,0,7,234,117,0,0,0,7,0,234,124],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,0,0,1,0,0,240,0,0,0,1,0,240,0,0,0,0,1,240],[177,162,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,240,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,1,0,240] >;
C3×Q8⋊F5 in GAP, Magma, Sage, TeX
C_3\times Q_8\rtimes F_5
% in TeX
G:=Group("C3xQ8:F5");
// GroupNames label
G:=SmallGroup(480,289);
// by ID
G=gap.SmallGroup(480,289);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,344,2524,1271,102,9414,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations