Extensions 1→N→G→Q→1 with N=Dic5 and Q=C4xS3

Direct product G=NxQ with N=Dic5 and Q=C4xS3
dρLabelID
C4xS3xDic5240C4xS3xDic5480,473

Semidirect products G=N:Q with N=Dic5 and Q=C4xS3
extensionφ:Q→Out NdρLabelID
Dic5:1(C4xS3) = F5xD12φ: C4xS3/C6C22 ⊆ Out Dic5608+Dic5:1(C4xS3)480,995
Dic5:2(C4xS3) = D60:3C4φ: C4xS3/C6C22 ⊆ Out Dic5608+Dic5:2(C4xS3)480,997
Dic5:3(C4xS3) = Dic15:14D4φ: C4xS3/Dic3C2 ⊆ Out Dic5240Dic5:3(C4xS3)480,482
Dic5:4(C4xS3) = C15:22(C4xD4)φ: C4xS3/Dic3C2 ⊆ Out Dic5240Dic5:4(C4xS3)480,522
Dic5:5(C4xS3) = Dic5:4D12φ: C4xS3/C12C2 ⊆ Out Dic5240Dic5:5(C4xS3)480,481
Dic5:6(C4xS3) = C4xC5:D12φ: C4xS3/C12C2 ⊆ Out Dic5240Dic5:6(C4xS3)480,521
Dic5:7(C4xS3) = S3xC10.D4φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5:7(C4xS3)480,475
Dic5:8(C4xS3) = D30.Q8φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5:8(C4xS3)480,480
Dic5:9(C4xS3) = C4xS3xF5φ: C4xS3/D6C2 ⊆ Out Dic5608Dic5:9(C4xS3)480,994
Dic5:10(C4xS3) = S3xC4:F5φ: C4xS3/D6C2 ⊆ Out Dic5608Dic5:10(C4xS3)480,996
Dic5:11(C4xS3) = C4xD30.C2φ: trivial image240Dic5:11(C4xS3)480,477

Non-split extensions G=N.Q with N=Dic5 and Q=C4xS3
extensionφ:Q→Out NdρLabelID
Dic5.1(C4xS3) = F5xDic6φ: C4xS3/C6C22 ⊆ Out Dic51208-Dic5.1(C4xS3)480,982
Dic5.2(C4xS3) = Dic6:5F5φ: C4xS3/C6C22 ⊆ Out Dic51208-Dic5.2(C4xS3)480,984
Dic5.3(C4xS3) = C5:C8.D6φ: C4xS3/C6C22 ⊆ Out Dic52408Dic5.3(C4xS3)480,1003
Dic5.4(C4xS3) = D15:C8:C2φ: C4xS3/C6C22 ⊆ Out Dic52408Dic5.4(C4xS3)480,1005
Dic5.5(C4xS3) = C40.55D6φ: C4xS3/Dic3C2 ⊆ Out Dic52404Dic5.5(C4xS3)480,343
Dic5.6(C4xS3) = C40.35D6φ: C4xS3/Dic3C2 ⊆ Out Dic52404Dic5.6(C4xS3)480,344
Dic5.7(C4xS3) = Dic3:5Dic10φ: C4xS3/Dic3C2 ⊆ Out Dic5480Dic5.7(C4xS3)480,400
Dic5.8(C4xS3) = Dic15:5Q8φ: C4xS3/Dic3C2 ⊆ Out Dic5480Dic5.8(C4xS3)480,401
Dic5.9(C4xS3) = F5xC3:C8φ: C4xS3/Dic3C2 ⊆ Out Dic51208Dic5.9(C4xS3)480,223
Dic5.10(C4xS3) = C30.3C42φ: C4xS3/Dic3C2 ⊆ Out Dic51208Dic5.10(C4xS3)480,225
Dic5.11(C4xS3) = Dic3xC5:C8φ: C4xS3/Dic3C2 ⊆ Out Dic5480Dic5.11(C4xS3)480,244
Dic5.12(C4xS3) = C30.M4(2)φ: C4xS3/Dic3C2 ⊆ Out Dic5480Dic5.12(C4xS3)480,245
Dic5.13(C4xS3) = C40.54D6φ: C4xS3/C12C2 ⊆ Out Dic52404Dic5.13(C4xS3)480,341
Dic5.14(C4xS3) = C40.34D6φ: C4xS3/C12C2 ⊆ Out Dic52404Dic5.14(C4xS3)480,342
Dic5.15(C4xS3) = Dic5:5Dic6φ: C4xS3/C12C2 ⊆ Out Dic5480Dic5.15(C4xS3)480,399
Dic5.16(C4xS3) = C4xC15:Q8φ: C4xS3/C12C2 ⊆ Out Dic5480Dic5.16(C4xS3)480,543
Dic5.17(C4xS3) = C8xC3:F5φ: C4xS3/C12C2 ⊆ Out Dic51204Dic5.17(C4xS3)480,296
Dic5.18(C4xS3) = C24:F5φ: C4xS3/C12C2 ⊆ Out Dic51204Dic5.18(C4xS3)480,297
Dic5.19(C4xS3) = C4xC15:C8φ: C4xS3/C12C2 ⊆ Out Dic5480Dic5.19(C4xS3)480,305
Dic5.20(C4xS3) = C30.11C42φ: C4xS3/C12C2 ⊆ Out Dic5480Dic5.20(C4xS3)480,307
Dic5.21(C4xS3) = S3xC8:D5φ: C4xS3/D6C2 ⊆ Out Dic51204Dic5.21(C4xS3)480,321
Dic5.22(C4xS3) = C40:D6φ: C4xS3/D6C2 ⊆ Out Dic51204Dic5.22(C4xS3)480,322
Dic5.23(C4xS3) = (S3xDic5):C4φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5.23(C4xS3)480,476
Dic5.24(C4xS3) = D30.23(C2xC4)φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5.24(C4xS3)480,479
Dic5.25(C4xS3) = C4:F5:3S3φ: C4xS3/D6C2 ⊆ Out Dic51208Dic5.25(C4xS3)480,983
Dic5.26(C4xS3) = (C4xS3):F5φ: C4xS3/D6C2 ⊆ Out Dic51208Dic5.26(C4xS3)480,985
Dic5.27(C4xS3) = C2xS3xC5:C8φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5.27(C4xS3)480,1002
Dic5.28(C4xS3) = S3xC22.F5φ: C4xS3/D6C2 ⊆ Out Dic51208-Dic5.28(C4xS3)480,1004
Dic5.29(C4xS3) = C2xD15:C8φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5.29(C4xS3)480,1006
Dic5.30(C4xS3) = D15:2M4(2)φ: C4xS3/D6C2 ⊆ Out Dic51208+Dic5.30(C4xS3)480,1007
Dic5.31(C4xS3) = C2xD6.F5φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5.31(C4xS3)480,1008
Dic5.32(C4xS3) = C2xDic3.F5φ: C4xS3/D6C2 ⊆ Out Dic5240Dic5.32(C4xS3)480,1009
Dic5.33(C4xS3) = S3xC8xD5φ: trivial image1204Dic5.33(C4xS3)480,319
Dic5.34(C4xS3) = D5xC8:S3φ: trivial image1204Dic5.34(C4xS3)480,320
Dic5.35(C4xS3) = D6.(C4xD5)φ: trivial image240Dic5.35(C4xS3)480,474
Dic5.36(C4xS3) = D30.C2:C4φ: trivial image240Dic5.36(C4xS3)480,478

׿
x
:
Z
F
o
wr
Q
<