Copied to
clipboard

G = F5×C3⋊C8order 480 = 25·3·5

Direct product of F5 and C3⋊C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: F5×C3⋊C8, C30.1C42, (C3×F5)⋊C8, C33(C8×F5), C151(C4×C8), C153C83C4, C15⋊C81C4, C6.6(C4×F5), (C6×F5).1C4, (C4×F5).3S3, C4.22(S3×F5), C20.22(C4×S3), C60.22(C2×C4), (C4×D5).68D6, (C12×F5).2C2, C12.29(C2×F5), C2.1(Dic3×F5), Dic5.9(C4×S3), (C2×F5).2Dic3, C10.1(C4×Dic3), C60.C4.2C2, D10.5(C2×Dic3), (D5×C12).60C22, C51(C4×C3⋊C8), D5.(C2×C3⋊C8), (C5×C3⋊C8)⋊3C4, (D5×C3⋊C8).6C2, (C6×D5).9(C2×C4), (C3×D5).1(C2×C8), (C3×Dic5).13(C2×C4), SmallGroup(480,223)

Series: Derived Chief Lower central Upper central

C1C15 — F5×C3⋊C8
C1C5C15C30C6×D5D5×C12C12×F5 — F5×C3⋊C8
C15 — F5×C3⋊C8
C1C4

Generators and relations for F5×C3⋊C8
 G = < a,b,c,d | a5=b4=c3=d8=1, bab-1=a3, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 308 in 88 conjugacy classes, 44 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D5, C10, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C3⋊C8, C2×C12, C3×D5, C30, C4×C8, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C2×C3⋊C8, C4×C12, C3×Dic5, C60, C3×F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C4×C3⋊C8, C5×C3⋊C8, C153C8, C15⋊C8, D5×C12, C6×F5, C8×F5, D5×C3⋊C8, C12×F5, C60.C4, F5×C3⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C42, C2×C8, F5, C3⋊C8, C4×S3, C2×Dic3, C4×C8, C2×F5, C2×C3⋊C8, C4×Dic3, C4×F5, C4×C3⋊C8, S3×F5, C8×F5, Dic3×F5, F5×C3⋊C8

Smallest permutation representation of F5×C3⋊C8
On 120 points
Generators in S120
(1 99 88 113 28)(2 100 81 114 29)(3 101 82 115 30)(4 102 83 116 31)(5 103 84 117 32)(6 104 85 118 25)(7 97 86 119 26)(8 98 87 120 27)(9 43 72 39 22)(10 44 65 40 23)(11 45 66 33 24)(12 46 67 34 17)(13 47 68 35 18)(14 48 69 36 19)(15 41 70 37 20)(16 42 71 38 21)(49 61 95 78 112)(50 62 96 79 105)(51 63 89 80 106)(52 64 90 73 107)(53 57 91 74 108)(54 58 92 75 109)(55 59 93 76 110)(56 60 94 77 111)
(17 34 46 67)(18 35 47 68)(19 36 48 69)(20 37 41 70)(21 38 42 71)(22 39 43 72)(23 40 44 65)(24 33 45 66)(25 118 104 85)(26 119 97 86)(27 120 98 87)(28 113 99 88)(29 114 100 81)(30 115 101 82)(31 116 102 83)(32 117 103 84)(57 91 108 74)(58 92 109 75)(59 93 110 76)(60 94 111 77)(61 95 112 78)(62 96 105 79)(63 89 106 80)(64 90 107 73)
(1 11 50)(2 51 12)(3 13 52)(4 53 14)(5 15 54)(6 55 16)(7 9 56)(8 49 10)(17 29 106)(18 107 30)(19 31 108)(20 109 32)(21 25 110)(22 111 26)(23 27 112)(24 105 28)(33 79 113)(34 114 80)(35 73 115)(36 116 74)(37 75 117)(38 118 76)(39 77 119)(40 120 78)(41 58 103)(42 104 59)(43 60 97)(44 98 61)(45 62 99)(46 100 63)(47 64 101)(48 102 57)(65 87 95)(66 96 88)(67 81 89)(68 90 82)(69 83 91)(70 92 84)(71 85 93)(72 94 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,99,88,113,28)(2,100,81,114,29)(3,101,82,115,30)(4,102,83,116,31)(5,103,84,117,32)(6,104,85,118,25)(7,97,86,119,26)(8,98,87,120,27)(9,43,72,39,22)(10,44,65,40,23)(11,45,66,33,24)(12,46,67,34,17)(13,47,68,35,18)(14,48,69,36,19)(15,41,70,37,20)(16,42,71,38,21)(49,61,95,78,112)(50,62,96,79,105)(51,63,89,80,106)(52,64,90,73,107)(53,57,91,74,108)(54,58,92,75,109)(55,59,93,76,110)(56,60,94,77,111), (17,34,46,67)(18,35,47,68)(19,36,48,69)(20,37,41,70)(21,38,42,71)(22,39,43,72)(23,40,44,65)(24,33,45,66)(25,118,104,85)(26,119,97,86)(27,120,98,87)(28,113,99,88)(29,114,100,81)(30,115,101,82)(31,116,102,83)(32,117,103,84)(57,91,108,74)(58,92,109,75)(59,93,110,76)(60,94,111,77)(61,95,112,78)(62,96,105,79)(63,89,106,80)(64,90,107,73), (1,11,50)(2,51,12)(3,13,52)(4,53,14)(5,15,54)(6,55,16)(7,9,56)(8,49,10)(17,29,106)(18,107,30)(19,31,108)(20,109,32)(21,25,110)(22,111,26)(23,27,112)(24,105,28)(33,79,113)(34,114,80)(35,73,115)(36,116,74)(37,75,117)(38,118,76)(39,77,119)(40,120,78)(41,58,103)(42,104,59)(43,60,97)(44,98,61)(45,62,99)(46,100,63)(47,64,101)(48,102,57)(65,87,95)(66,96,88)(67,81,89)(68,90,82)(69,83,91)(70,92,84)(71,85,93)(72,94,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,99,88,113,28)(2,100,81,114,29)(3,101,82,115,30)(4,102,83,116,31)(5,103,84,117,32)(6,104,85,118,25)(7,97,86,119,26)(8,98,87,120,27)(9,43,72,39,22)(10,44,65,40,23)(11,45,66,33,24)(12,46,67,34,17)(13,47,68,35,18)(14,48,69,36,19)(15,41,70,37,20)(16,42,71,38,21)(49,61,95,78,112)(50,62,96,79,105)(51,63,89,80,106)(52,64,90,73,107)(53,57,91,74,108)(54,58,92,75,109)(55,59,93,76,110)(56,60,94,77,111), (17,34,46,67)(18,35,47,68)(19,36,48,69)(20,37,41,70)(21,38,42,71)(22,39,43,72)(23,40,44,65)(24,33,45,66)(25,118,104,85)(26,119,97,86)(27,120,98,87)(28,113,99,88)(29,114,100,81)(30,115,101,82)(31,116,102,83)(32,117,103,84)(57,91,108,74)(58,92,109,75)(59,93,110,76)(60,94,111,77)(61,95,112,78)(62,96,105,79)(63,89,106,80)(64,90,107,73), (1,11,50)(2,51,12)(3,13,52)(4,53,14)(5,15,54)(6,55,16)(7,9,56)(8,49,10)(17,29,106)(18,107,30)(19,31,108)(20,109,32)(21,25,110)(22,111,26)(23,27,112)(24,105,28)(33,79,113)(34,114,80)(35,73,115)(36,116,74)(37,75,117)(38,118,76)(39,77,119)(40,120,78)(41,58,103)(42,104,59)(43,60,97)(44,98,61)(45,62,99)(46,100,63)(47,64,101)(48,102,57)(65,87,95)(66,96,88)(67,81,89)(68,90,82)(69,83,91)(70,92,84)(71,85,93)(72,94,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,99,88,113,28),(2,100,81,114,29),(3,101,82,115,30),(4,102,83,116,31),(5,103,84,117,32),(6,104,85,118,25),(7,97,86,119,26),(8,98,87,120,27),(9,43,72,39,22),(10,44,65,40,23),(11,45,66,33,24),(12,46,67,34,17),(13,47,68,35,18),(14,48,69,36,19),(15,41,70,37,20),(16,42,71,38,21),(49,61,95,78,112),(50,62,96,79,105),(51,63,89,80,106),(52,64,90,73,107),(53,57,91,74,108),(54,58,92,75,109),(55,59,93,76,110),(56,60,94,77,111)], [(17,34,46,67),(18,35,47,68),(19,36,48,69),(20,37,41,70),(21,38,42,71),(22,39,43,72),(23,40,44,65),(24,33,45,66),(25,118,104,85),(26,119,97,86),(27,120,98,87),(28,113,99,88),(29,114,100,81),(30,115,101,82),(31,116,102,83),(32,117,103,84),(57,91,108,74),(58,92,109,75),(59,93,110,76),(60,94,111,77),(61,95,112,78),(62,96,105,79),(63,89,106,80),(64,90,107,73)], [(1,11,50),(2,51,12),(3,13,52),(4,53,14),(5,15,54),(6,55,16),(7,9,56),(8,49,10),(17,29,106),(18,107,30),(19,31,108),(20,109,32),(21,25,110),(22,111,26),(23,27,112),(24,105,28),(33,79,113),(34,114,80),(35,73,115),(36,116,74),(37,75,117),(38,118,76),(39,77,119),(40,120,78),(41,58,103),(42,104,59),(43,60,97),(44,98,61),(45,62,99),(46,100,63),(47,64,101),(48,102,57),(65,87,95),(66,96,88),(67,81,89),(68,90,82),(69,83,91),(70,92,84),(71,85,93),(72,94,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

60 conjugacy classes

class 1 2A2B2C 3 4A4B4C···4L 5 6A6B6C8A8B8C8D8E···8P 10 12A12B12C···12L 15 20A20B 30 40A40B40C40D60A60B
order12223444···4566688888···810121212···1215202030404040406060
size11552115···5421010333315···1542210···1084481212121288

60 irreducible representations

dim1111111112222224444888
type++++++-+++-
imageC1C2C2C2C4C4C4C4C8S3D6Dic3C4×S3C4×S3C3⋊C8F5C2×F5C4×F5C8×F5S3×F5Dic3×F5F5×C3⋊C8
kernelF5×C3⋊C8D5×C3⋊C8C12×F5C60.C4C5×C3⋊C8C153C8C15⋊C8C6×F5C3×F5C4×F5C4×D5C2×F5Dic5C20F5C3⋊C8C12C6C3C4C2C1
# reps11112244161122281124112

Matrix representation of F5×C3⋊C8 in GL6(𝔽241)

100000
010000
00000240
00100240
00010240
00001240
,
100000
010000
000010
001000
000001
000100
,
02400000
12400000
001000
000100
000010
000001
,
186780000
23550000
008000
000800
000080
000008

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,240,240,240,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[186,23,0,0,0,0,78,55,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8] >;

F5×C3⋊C8 in GAP, Magma, Sage, TeX

F_5\times C_3\rtimes C_8
% in TeX

G:=Group("F5xC3:C8");
// GroupNames label

G:=SmallGroup(480,223);
// by ID

G=gap.SmallGroup(480,223);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,64,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^3=d^8=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽