Copied to
clipboard

G = C8×C3⋊F5order 480 = 25·3·5

Direct product of C8 and C3⋊F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C8×C3⋊F5, C244F5, C1204C4, C403Dic3, C30.8C42, C31(C8×F5), C154(C4×C8), C15⋊C87C4, C52(C8×Dic3), C6.1(C4×F5), (C8×D5).9S3, D5.2(S3×C8), C60.54(C2×C4), (C4×D5).93D6, C52C87Dic3, C12.56(C2×F5), (D5×C24).14C2, D10.12(C4×S3), C10.8(C4×Dic3), C60.C4.6C2, Dic5.17(C4×S3), C20.16(C2×Dic3), (D5×C12).121C22, C2.1(C4×C3⋊F5), (C2×C3⋊F5).4C4, (C4×C3⋊F5).6C2, C4.15(C2×C3⋊F5), (C3×C52C8)⋊13C4, (C3×D5).3(C2×C8), (C6×D5).39(C2×C4), (C3×Dic5).47(C2×C4), SmallGroup(480,296)

Series: Derived Chief Lower central Upper central

C1C15 — C8×C3⋊F5
C1C5C15C30C6×D5D5×C12C4×C3⋊F5 — C8×C3⋊F5
C15 — C8×C3⋊F5
C1C8

Generators and relations for C8×C3⋊F5
 G = < a,b,c,d | a8=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 364 in 88 conjugacy classes, 41 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C24, C24, C2×Dic3, C2×C12, C3×D5, C30, C4×C8, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C2×C3⋊C8, C4×Dic3, C2×C24, C3×Dic5, C60, C3⋊F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C8×Dic3, C3×C52C8, C120, C15⋊C8, D5×C12, C2×C3⋊F5, C8×F5, D5×C24, C60.C4, C4×C3⋊F5, C8×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C42, C2×C8, F5, C4×S3, C2×Dic3, C4×C8, C2×F5, S3×C8, C4×Dic3, C3⋊F5, C4×F5, C8×Dic3, C2×C3⋊F5, C8×F5, C4×C3⋊F5, C8×C3⋊F5

Smallest permutation representation of C8×C3⋊F5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 64 50)(2 57 51)(3 58 52)(4 59 53)(5 60 54)(6 61 55)(7 62 56)(8 63 49)(9 69 39)(10 70 40)(11 71 33)(12 72 34)(13 65 35)(14 66 36)(15 67 37)(16 68 38)(17 48 120)(18 41 113)(19 42 114)(20 43 115)(21 44 116)(22 45 117)(23 46 118)(24 47 119)(25 95 102)(26 96 103)(27 89 104)(28 90 97)(29 91 98)(30 92 99)(31 93 100)(32 94 101)(73 84 105)(74 85 106)(75 86 107)(76 87 108)(77 88 109)(78 81 110)(79 82 111)(80 83 112)
(1 73 113 65 99)(2 74 114 66 100)(3 75 115 67 101)(4 76 116 68 102)(5 77 117 69 103)(6 78 118 70 104)(7 79 119 71 97)(8 80 120 72 98)(9 96 54 109 45)(10 89 55 110 46)(11 90 56 111 47)(12 91 49 112 48)(13 92 50 105 41)(14 93 51 106 42)(15 94 52 107 43)(16 95 53 108 44)(17 34 29 63 83)(18 35 30 64 84)(19 36 31 57 85)(20 37 32 58 86)(21 38 25 59 87)(22 39 26 60 88)(23 40 27 61 81)(24 33 28 62 82)
(9 88 45 26)(10 81 46 27)(11 82 47 28)(12 83 48 29)(13 84 41 30)(14 85 42 31)(15 86 43 32)(16 87 44 25)(17 91 34 112)(18 92 35 105)(19 93 36 106)(20 94 37 107)(21 95 38 108)(22 96 39 109)(23 89 40 110)(24 90 33 111)(49 63)(50 64)(51 57)(52 58)(53 59)(54 60)(55 61)(56 62)(65 73 113 99)(66 74 114 100)(67 75 115 101)(68 76 116 102)(69 77 117 103)(70 78 118 104)(71 79 119 97)(72 80 120 98)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,64,50)(2,57,51)(3,58,52)(4,59,53)(5,60,54)(6,61,55)(7,62,56)(8,63,49)(9,69,39)(10,70,40)(11,71,33)(12,72,34)(13,65,35)(14,66,36)(15,67,37)(16,68,38)(17,48,120)(18,41,113)(19,42,114)(20,43,115)(21,44,116)(22,45,117)(23,46,118)(24,47,119)(25,95,102)(26,96,103)(27,89,104)(28,90,97)(29,91,98)(30,92,99)(31,93,100)(32,94,101)(73,84,105)(74,85,106)(75,86,107)(76,87,108)(77,88,109)(78,81,110)(79,82,111)(80,83,112), (1,73,113,65,99)(2,74,114,66,100)(3,75,115,67,101)(4,76,116,68,102)(5,77,117,69,103)(6,78,118,70,104)(7,79,119,71,97)(8,80,120,72,98)(9,96,54,109,45)(10,89,55,110,46)(11,90,56,111,47)(12,91,49,112,48)(13,92,50,105,41)(14,93,51,106,42)(15,94,52,107,43)(16,95,53,108,44)(17,34,29,63,83)(18,35,30,64,84)(19,36,31,57,85)(20,37,32,58,86)(21,38,25,59,87)(22,39,26,60,88)(23,40,27,61,81)(24,33,28,62,82), (9,88,45,26)(10,81,46,27)(11,82,47,28)(12,83,48,29)(13,84,41,30)(14,85,42,31)(15,86,43,32)(16,87,44,25)(17,91,34,112)(18,92,35,105)(19,93,36,106)(20,94,37,107)(21,95,38,108)(22,96,39,109)(23,89,40,110)(24,90,33,111)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62)(65,73,113,99)(66,74,114,100)(67,75,115,101)(68,76,116,102)(69,77,117,103)(70,78,118,104)(71,79,119,97)(72,80,120,98)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,64,50)(2,57,51)(3,58,52)(4,59,53)(5,60,54)(6,61,55)(7,62,56)(8,63,49)(9,69,39)(10,70,40)(11,71,33)(12,72,34)(13,65,35)(14,66,36)(15,67,37)(16,68,38)(17,48,120)(18,41,113)(19,42,114)(20,43,115)(21,44,116)(22,45,117)(23,46,118)(24,47,119)(25,95,102)(26,96,103)(27,89,104)(28,90,97)(29,91,98)(30,92,99)(31,93,100)(32,94,101)(73,84,105)(74,85,106)(75,86,107)(76,87,108)(77,88,109)(78,81,110)(79,82,111)(80,83,112), (1,73,113,65,99)(2,74,114,66,100)(3,75,115,67,101)(4,76,116,68,102)(5,77,117,69,103)(6,78,118,70,104)(7,79,119,71,97)(8,80,120,72,98)(9,96,54,109,45)(10,89,55,110,46)(11,90,56,111,47)(12,91,49,112,48)(13,92,50,105,41)(14,93,51,106,42)(15,94,52,107,43)(16,95,53,108,44)(17,34,29,63,83)(18,35,30,64,84)(19,36,31,57,85)(20,37,32,58,86)(21,38,25,59,87)(22,39,26,60,88)(23,40,27,61,81)(24,33,28,62,82), (9,88,45,26)(10,81,46,27)(11,82,47,28)(12,83,48,29)(13,84,41,30)(14,85,42,31)(15,86,43,32)(16,87,44,25)(17,91,34,112)(18,92,35,105)(19,93,36,106)(20,94,37,107)(21,95,38,108)(22,96,39,109)(23,89,40,110)(24,90,33,111)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62)(65,73,113,99)(66,74,114,100)(67,75,115,101)(68,76,116,102)(69,77,117,103)(70,78,118,104)(71,79,119,97)(72,80,120,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,64,50),(2,57,51),(3,58,52),(4,59,53),(5,60,54),(6,61,55),(7,62,56),(8,63,49),(9,69,39),(10,70,40),(11,71,33),(12,72,34),(13,65,35),(14,66,36),(15,67,37),(16,68,38),(17,48,120),(18,41,113),(19,42,114),(20,43,115),(21,44,116),(22,45,117),(23,46,118),(24,47,119),(25,95,102),(26,96,103),(27,89,104),(28,90,97),(29,91,98),(30,92,99),(31,93,100),(32,94,101),(73,84,105),(74,85,106),(75,86,107),(76,87,108),(77,88,109),(78,81,110),(79,82,111),(80,83,112)], [(1,73,113,65,99),(2,74,114,66,100),(3,75,115,67,101),(4,76,116,68,102),(5,77,117,69,103),(6,78,118,70,104),(7,79,119,71,97),(8,80,120,72,98),(9,96,54,109,45),(10,89,55,110,46),(11,90,56,111,47),(12,91,49,112,48),(13,92,50,105,41),(14,93,51,106,42),(15,94,52,107,43),(16,95,53,108,44),(17,34,29,63,83),(18,35,30,64,84),(19,36,31,57,85),(20,37,32,58,86),(21,38,25,59,87),(22,39,26,60,88),(23,40,27,61,81),(24,33,28,62,82)], [(9,88,45,26),(10,81,46,27),(11,82,47,28),(12,83,48,29),(13,84,41,30),(14,85,42,31),(15,86,43,32),(16,87,44,25),(17,91,34,112),(18,92,35,105),(19,93,36,106),(20,94,37,107),(21,95,38,108),(22,96,39,109),(23,89,40,110),(24,90,33,111),(49,63),(50,64),(51,57),(52,58),(53,59),(54,60),(55,61),(56,62),(65,73,113,99),(66,74,114,100),(67,75,115,101),(68,76,116,102),(69,77,117,103),(70,78,118,104),(71,79,119,97),(72,80,120,98)]])

72 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E···4L 5 6A6B6C8A8B8C8D8E8F8G8H8I···8P 10 12A12B12C12D15A15B20A20B24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order1222344444···45666888888888···8101212121215152020242424242424242430304040404060606060120···120
size11552115515···154210101111555515···154221010444422221010101044444444444···4

72 irreducible representations

dim111111111222222244444444
type+++++--+++
imageC1C2C2C2C4C4C4C4C8S3Dic3Dic3D6C4×S3C4×S3S3×C8F5C2×F5C3⋊F5C4×F5C2×C3⋊F5C8×F5C4×C3⋊F5C8×C3⋊F5
kernelC8×C3⋊F5D5×C24C60.C4C4×C3⋊F5C3×C52C8C120C15⋊C8C2×C3⋊F5C3⋊F5C8×D5C52C8C40C4×D5Dic5D10D5C24C12C8C6C4C3C2C1
# reps1111224416111122811222448

Matrix representation of C8×C3⋊F5 in GL6(𝔽241)

21100000
02110000
001000
000100
000010
000001
,
2402400000
100000
0012601212
002291142290
000229114229
0012120126
,
100000
010000
000100
000010
000001
00240240240240
,
17700000
64640000
000010
001000
000001
000100

G:=sub<GL(6,GF(241))| [211,0,0,0,0,0,0,211,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[240,1,0,0,0,0,240,0,0,0,0,0,0,0,126,229,0,12,0,0,0,114,229,12,0,0,12,229,114,0,0,0,12,0,229,126],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,0,0,1,0,0,240,0,0,0,1,0,240,0,0,0,0,1,240],[177,64,0,0,0,0,0,64,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

C8×C3⋊F5 in GAP, Magma, Sage, TeX

C_8\times C_3\rtimes F_5
% in TeX

G:=Group("C8xC3:F5");
// GroupNames label

G:=SmallGroup(480,296);
// by ID

G=gap.SmallGroup(480,296);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,64,80,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽